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Abstract. This is a note from T. Willwacher’s lecture series which was part of masterclass
“Algebraic structure of Hochschild complexes” at the University of Copenhagen in October

2015.

From the course description: Graph complexes are differential graded vector spaces whose
elements are linear combinations of combinatorial graphs. The differential is the operation

of contracting an edge. These graph complexes exist in a variety of flavors (ribbon graphs,
directed/undirected graphs etc.), each of which plays a central role in otherwise quite disjoint

areas of mathematics like knot theory, geometric group theory and moduli spaces of curves.

Despite the very elementary definition and its fundamental importance we know surprisingly
little about what the graph homology actually is. The purpose of the course is to give an

introduction to the problem and its origins, along with an overview of recent results.
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1. General overview

1.1. Cochain complexes.

Definition 1.1. In this lecture we mainly work with cochain complexes: A Z-graded vector space
is defined as a vector space V , endowed with a direct sum decomposition

V =
⊕
i∈Z

Vi.

We call v ∈ Vi a vector of degree i, denoted by |v| = i.
Suppose V = ⊕Vi and W = ⊕Wi are Z-graded vector spaces, and F : V → W is a linear map.

We say that F of degree n if
F (Vi) ⊂Wi+n

holds for any i.
1
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A cochain complex, or a differential graded vector space, is defined to be a pair (V, d), consisting
of a Z-graded vector space V and a linear map

d : V → V,

called the differential, of degree 1 such that d2 = 0 (this can be also expressed as Ker d ⊂ Im d).
A chain complex is the same, but with d of degree −1 instead.

When (V, d) is a cochain complex, we call v ∈ Ker d closed and v ∈ Im d exact. We put
H(V ) = Ker d/ Im d, and call it the cohomology of (V, d). This is a Z-graded vector space, where
the grading is given by

Hi(V ) = Ker(d : Vi → Vi+1)
/

Im(d : Vi−1 → Vi) .

1.2. Metadefinition of graph complexes. There are many types of graph complexes, but all
of them have the following form:

• Elements of graph complexes: formal linear combinations of isomorphism classes of (some
type of) graphs

• A prescription to assign degrees to graphs
• the cochain differential is given by (alternating) sum of edge contractions:

dΓ =
∑

e : edges

±Γ/e.

By an edge contraction, we mean an operation of the form

e 7→

The signs are chosen in such a way that d2 = 0 holds.

Given such a graph complex, we can consider its cohomology H(graph complex), which is called
the graph cohomology. Examples of graph types are:

(1) Trees, planar trees (which have uninteresting cohomology).
(2) Undirected combinatorial graphs, like Figure 1a. We could add extra conditions on the

graphs, such as:
• the valency of edges being greater than 2,
• being connected,
• being simple, i.e., not allowing parts like Figures 1b and 1c.
• being 1-vertex irreducible, i.e., the graph remains connected after removing any one

vertex and its adjacent edges.
(3) Graphs with directed edges, like Figure 1d. Again with optional conditions such as:

• being acyclic (no closed loops),
• ribbon graphs (with a fixed cyclic ordering of edges at vertices), we can draw it like

Figures 1e and 1f,
• having extra decorations on edges or vertices, like Figure 1g.

(a) undirected graph (b) nonsimple graph (c) nonsimple graph (d) directed graph

(e) ribbon graph (f) ribbon graph

∗

(g) decoration

Figure 1. graphs

Remark 1.2. Apart from trees, graph cohomology in general is unknown!
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1.3. Classical problems reducible to graph cohomological computations. Many interest-
ing problems in mathematics can be recast in terms of graph cohomology computations. Let us
list several such problems below.

1.3.1. Cohomology of the moduli spaces of curves. Consider the moduli space Mg,n of complex
structures on an orientable surface Σg,n of genus g with n labeled punctures.

1

2

3

4

5

6

Figure 2. The surface Σ5,6

It is an open problem to compute the cohomology of the moduli space, ⊕n,gH(Mg,n,Q).
One can also consider the case with unorderd punctures by considering the direct summand
H(Mn,g)/Sn, where the symmetric group Sn acts by permuting the labels of punctures. One
can also make the punctures “odd” by tensoring with the sign representation to get⊕

n,g

(H(Mn,g)⊗ sgnn)
/
Sn .

In the stable setting and for n ≥ 1, the computation of the H(Mg,n) can be recast as the
computation of a ribbon graph complex (Penner [Pen88]). An extra differential from action on
Lie bialgebras was found in joint work with Merkulov [MW15] and in another (yet unpublished)
work of Arinkin and Caldararu. We will discuss this briefly in Section 5.

1.3.2. Knot theory. The goal of knot theory is to study embedding of S1 (or R or Rm) in R3 (or
Rn), so things like

or .

The “finite type invariants” can be recast in terms of “hairy graphs”, such as

.

When all vertices are trivalent, this gives rise to the Vassiliev invariants (these are conjecturally
complete). Other classes give elements in πk(Emb∂(Rm,Rn)). We will discuss about this in
Section 3 more in detail.
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1.3.3. Outer automorphism groups of free groups. Denote by Fn the free group on n generators
x1, . . . , xn, i.e

Fn = {words in x1, . . . , xn, x
−1
1 , . . . , x−1

n }/∼,

where the equivalence relation ∼ is generated by xix
−1
i = e for the neutral element e corresponding

to the empty word. We denote by Aut(Fn) the automorphisms of the group Fn, and regard Fn as a
subgroup of Aut(Fn) realized as the inner automorphisms, i.e., φm(x) = mxm−1 for all m,x ∈ Fn.
Since the inner automorphisms form a normal subgroup Aut(Fn), we can consider the quotient
group

Out(Fn) := Aut(Fn)/Fn

called the outer automorphisms. It is an open problem to compute the group cohomologies
H•(Out(Fn)) and H•(Aut(Fn)). This problem can be recast as a graph cohomology computa-
tion. The relevant graph complex (see for example [Vog06]) is given by graphs with marked edges
that cut the graph into trees, like Figure 3a. Another equivalent (and the more standard ap-

(a) graph with marked edges (b) graph with tree decoration

Figure 3. Presenting H•(Out(Fn))

proach) way is to consider the graphs with vertices decorated by trivalent trees like Figure 3b,
with the relation

+ + = 0.

1.3.4. Deformation quantization. This is “governed” by graph complexes of simple graphs [Dol11,
Wil14], through the action of the graph operad on polyvector fields over Rd.

1.3.5. Quantum groups/Lie bialgebras. Universal deformations of Lie bialgebra structures (equiv-
alent classes of quantizations) are governed [Wil15a] by directed acyclic graph complexes, like

.

Classes of degree 1 give universal deformations.

1.3.6. Diffeomorphism groups of spheres. Graph complexes give special classes in H∗(Diff(Sn)).

1.3.7. Deformation theory of En Operads. These are governed by “simple” graph complexes, in the
sense that the automorphisms of the En operad is the unipotent group arising from cohomology
of simple graphs.
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1.4. Summary.

• Many problems in mathematics can be restated in terms of graph complexes.
• Graph complexes offer “clean” presentations of these problems.
• But one should remember that they are not always the best for solving the problem.
• One could do research in the following ways:

(1) Reduce other problems in mathematics to graph complex computation.
(2) Computing graph cohomology.
(3) Zoology: relate different graph complexes and classify them in terms of difficulty.

2. Combinatorial definition of the simplest graph complex

Let gra≥3,conn
r,k denote the set of connected, directed graphs Γ with vertex set {1, . . . , r} and

k edges (ordered and directed), i.e., pairs (i1, j1), . . . , (ik, jk), such that all vertices have valency
≥ 3. Denote by Sn the symmetric group in n letters. Then

Sr × (Sk n Sk2 )

acts on gra≥3,conn
r,k by permuting vertex labels, permuting edge labels and flipping edge directions

respectively. Let us fix n ∈ Z and define the degree of Γ ∈ gra≥3,conn
r,k by

deg(Γ) := k(n− 1)− (r − 1)n,

so that edges have degree n− 1 and vertices have degree −n.

Definition 2.1. The underlying graded space of the graph complex is

Gn :=
⊕
r,k

(
Q〈gra≥3,conn

r,k 〉 ⊗ twistn,k,r

)
Sr×SknSk2

,

where the subscript Sr × Sk n Sk2 means taking coinvariants, and

twistn,k,r :=

{
sgnk if n is even (“edges are odd”),

sgnr ⊗ sgn⊗k2 if n is odd (“vertices are odd”).

Example 2.2. Here are the examples of the above sign conventions.

n even:

i

j

= −

j

i

n odd :

= −
(

i j j i

)
, = −

Remark 2.3. The signs already give us some information.

n even:

1

2

=

2

1

= −
1

2

⇒
1

2

= 0

n odd :

= = − ⇒ = 0
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Exercise 2.4. Show that

= 0

for any n.

Definition 2.5. The differential on Gn is defined as

dΓ =
∑
e

±Γ/e,

where the summation is over the non-loop edges of Γ. Recall that by Γ/e we mean

e 7→

where the sign and numbering on Γ/e is defined as follows.

n even: If e is the j-th in the ordering,
• ± = (−1)j+1,
• keep ordering on the other edges.

Note that the numbering on vertices doesn’t matter since we take Sr coinvariants.
n odd : Suppose e is an edge from vertex i to j, with i 6= j. Then

• ± =

{
(−1)i+j+1 if i < j

(−1)i+j if i > j

• Numbering of vertices is unchanged, except that the newly formed vertex becomes
the first.

Exercise 2.6. Show that d is well-defined, and satisfies d2 = 0.

Remark 2.7. The complex just described admits a structure of differential graded Lie algebra.

3. Knot theory, or rational homotopy type of little disks operad

3.1. Operads. Operads offer a high level perspective of algebraic structure in the following sense.
It is an attempt to describe the parallels in different algebraic structures. Before, every deforma-
tion/homotopy theory had to be done separately for different algebraic structures. Moving up one
level gives a universal answer. More precisely, an operad encodes the “space of operations” on
some type of algebraic objects.

Example 3.1. Let A be an associative algebra over Q (or some field k), and suppose a1, . . . , an
are elements of A. Then the most form of operations on these to obtain an element of A are
expressed as

(a1, . . . , an) 7→
∑
σ∈Sn

λσaσ(1) · · · aσ(n)

for some numbers λσ ∈ Q. So the operad As = (As(n))n encoding this structure is given by the
regular representations As(n) = Q[Sn].

Definition 3.2. An operad P is a collection P(r) (r = 0, 1, . . .) of right Sr-modules, together with

• composition morphisms

µm,r1,...,rm : P(m)⊗ P(r1)⊗ . . .⊗ P(rm) −→ P(r1 + . . .+ rm)

• a unit element 1 ∈ P(1),

subject to the axioms

• “associativity” of composition
• the unit axioms µ1(1;x) = x and µm(x; 1, 1, . . . , 1) = x (here we suppressed the other

indices).
• Equivariance of composition under the Sm-action.
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Pictorially, we can view the composition as

and in the same way the associativity axiom should become clear as equality of the two different
ways of composing the following (starting at the bottom or starting at the top)

Let us introduce some convenient variations/notations. First, the composition is characterized
by maps

◦j : P(m)⊗ P(l) −→ P(m+ l − 1)

given by x◦j y = µm(x; 1, . . . , 1, y, 1, . . . , 1), with y after the jth 1. Pictorially we have for instance

◦2 = ,

note that the ◦j completely determine the compositions.
It is often useful to label inputs by sets. So, instead of the collection P(r), we consider a functor

P : (FinSets,bij)
op → dgVect

from the opposite category of finite sets and bijections to the one of differential graded vector
spaces. Note the symmetric group actions and equivariance are now implied by looking at the
bijections. We recover the previous by P(r) = P({1, . . . , r}).

With the above extension, we can now formulate the composition in terms of trees. Consider a
tree T whose leaves are labeled by elements of some set S. We define the tree-wise tensor product
as ⊗

T

P :=
⊗
v

P(star(v)),

where v ranges over the vertices of T .

s3

v2

s1

s2 s4

v1
star(v1)

The composition of P can be formulated as the “concatenation” map µT :
⊗

T P→ P(S).
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Definition 3.3. We will also consider the dual concept of a cooperad C, whose structure is encoded
by maps

∆T : C(S) −→
⊗
T

C

when T and S are as above.

Remark 3.4. We can also make sense of operads taking value in any symmetric monoidal category,
such as:

(1) differential graded vector spaces,
(2) topological spaces,
(3) operads in differential graded coalgebras, cooperads in differential graded algebras or (these

are called dg Hopf operads and dg Hopf cooperads respectively),
(4) cooperads in differential graded commutative algebras, . . . (commutative dg Hopf cooper-

ads, . . .).

Let us list the most fundamental examples of algebraic structures and corresponding operads.

Associative algebras: As(r) = Q[Sr], so that As(S) = Q[Sym(S)] for any finite set S. The
non-unital associative algebras correspond to the convention As(0) = 0.

Commutative algebras: Com(r) = Q for all r.
Lie algebras: Lie(0) = 0 and Lie(r) = Q(r−1)!, with basis [xσ(1), [xσ(2), . . . , [xσ(n−1), xn] . . .]].

In terms of generators and relations, Lie(r) is given by [·, ·] ∈ Lie(2) and the Jacobi
relations.

Poisson n-algebras: Poisn is generated by ·∧· ∈ Poisn(2) of degree 0, [·, ·] ∈ Poisn(2) of degree
1− n with the relations of a commutative product for · ∧ ·, the relations of a (grade) Lie
bracket for [·, ·] and the compatibility relation

[x1, x2 ∧ x3] = [x1, x2] ∧ x3 + [x1, x3] ∧ x2

Exercise 3.5. Check that dimPoisn(r) = r!.

Shifting : Given m ∈ Z, every operad P induces a new operad by

P{m}(r) =

{
P(r)[(r − 1)m] if m is even,

P(r)[(r − 1)m]⊗ sgn if m is odd.

This is chosen such that if V is a P-algebra, then V [m] is a P{m} algebra.
Little Disks Operad : LDn(r) is the space of rectilinear embeddings of r ”small” disks in the n

dimensional unit disk. Here ‘rectilinear’ means that you can scale and translate the disks,
but you cannot deform, rotate or do anything else to them. For example,

1

2

3

is an element of LD2(3). The action of Sr on LDn(r) is given by permuting the little
disks, and the composition ◦j is given by gluing into the j-th disk and forgetting about
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the boundary of the jth disk. For example

1

2

3

◦2 a b =

1

3

a b

.

The unit is given by the an n-disk with single n-disk embedded in it, for example

1

.

Furthermore we have LDn(0) = ? and composition at j with ? amounts to forgetting the
j-th disk.

Definition 3.6. If there is a chain of weak equivalences

LDn
∼−→ . . .

∼←− . . . ∼−→ . . .
∼←− . . . ∼−→ P

from the LDn operad to P, then P is called an En operad.

Remark 3.7. We have the “equator embedding” maps LDn → LDn+1, which are the higher dimen-
sional analogues of the map LD1 → LD2 given by

LD1

1
a

2

3.5
b

1.5

1

7→

LD2

ba 2 1.5

3.51 1

Remark 3.8. It has been historically well studied when it arose in topology in the following ways:

• LDn acts on ΩnX (n-fold based loop space) for any X by “filling in little disks by loops
and mapping the outside to the the base point”.

• (May [May72]): If LDn acts on a connected space X, then ∃Y such that X ' ΩnY ('
denotes weak equivalence). (This is not why we still study them today).

• (Getzler–Jones [GJ94], Kontsevich [Kon99], Salvatore [Sal01]): The little disks operads
can be also described by the sequence (FMn(r))r of the Fulton–MacPherson [FM94] (or
Axelrod–Singer [AS94]) compactifications of configuration spaces of points,

FMn(r) =
(

Confr(Rn)
/

(R>0 nRn)

)
.

Roughly speaking, this compactification is obtained by replacing k-points by a copy of
FMn(k) when they ‘collide’.
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Theorem 3.9 (F. Cohen [Coh76]). The homology of the little disks operad is given by

H(LDn;Q) =

{
Asu if n = 1

Poisun if n ≥ 2

where the u that means we have a 0-ary operation (unit).

3.2. Goodwillie–Weiss calculus. Consider the space of embeddings Emb∂(Rm,Rn) of Rm ↪→
Rn which agree with the standard embedding outside of a compact ball. First we introduce some
technicality. We can consider

Emb∂(Rm,Rn) −→ Emb∂(Rm,Rn) −→ Imm∂(Rm,Rn)

where Emb∂(Rm,Rn) is the homotopy fiber. Since Imm∂(Rm,Rn) is well understood (homotopy
equivalent to a loop space of some Grassmannian), for a topologist the space Emb∂(Rm,Rn) is
equally good. We shall use the following theorem as a black box. From now on, we will reserve
the symbol ' for weak equivalences. By the work of Goodwillie–Weiss [Wei99, GW99], Dwyer–
Hess [DH12], and Boavida de Brito–Weiss [BdBW15] among others, the homotopy type of this
homotopy fiber can be identified as follows.

Theorem 3.10. When n−m ≥ 3, one has

Emb∂(Rm,Rn) ' Ωn+1 MapTopOp(LDm, LDn)

where TopOp denotes the category of topological operads and Ω denotes the (based) loop space.

Thus, we can instead study the property of MapTopOp(LDm, LDn). The rational homotopy
theory tells that there is a correspondence between the topological spaces and (certain type of) dg
commutative algebras. It follows that topological operads correspond to certain dg commutative
Hopf cooperads.

Lemma 3.11. Let EHc
n be a rational differential graded Hopf cooperad model for LDn. When

n−m ≥ 2, one has

MapTopOp(LDm, LDn)Q ' MapTopOp(LDm, LD
Q
n) ' MapdgHCoop(EHc

n ,EHc
m ).

The above correspondence should be understood based on an adjunction

TopOp � dgHCoop,

where going right and then left gives the rationalisation. In the end, our goal then has become to
study MapdgHCoop(EHc

n ,EHc
m ) (see Theorem 4.6). We should first describe the mapping space in

the category dgHCoop, secondly we should describe the specific Hopf cooperads we are working
with, and lastly we should do an actual computation.

3.3. Deformation theory of operads. We first try to find a recipe for a computable model of
MapdgHCoop. The philosophy is as follows. The mapping space Map(A,B) in a model category
should be a simplicial set

Map(A,B) = Hom(Â, B̃∆),

where

• Â is a cofibrant replacement of A,
• B̃ is a fibrant replacement of B, and
• and B̃∆ is a simplicial frame of B̃.

The space is then the linearization of the induced simplicial set. In practice, we do the following.

• Find a dg Lie (or L∞) algebra g that “governs” the maps Â → B̃, in the sense that the
set of maps can be identified to that of Maurer–Cartan elements

MC(g) =

{
x ∈ g1|dx+

1

2
[x, x] = 0

}
.
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• Then represent Map(A,B) by the simplicial set

MC•(g) := MC(Ωpol(∆
•) ⊗̂ g),

where Ωpol(∆
n) is the set of polynomial differential forms on the standard n-simplex.

Note that when g is a usual Lie algebra, MC•(g) is the space of flat connection on ∆•

with values in g.

Theorem 3.12 (Berglund [Ber11]). Suppose g is a pronilpotent L∞-algebra and m be an element
of MC•(g). Then one has

πk(MC•(g),m) = H1−k(gm),

where gm denotes the g with the modified L∞-structure given by

µmj =
∑
k≥0

1

k!
µj+k(−,−, . . . ,−,m, . . . ,m).

Note that for g is a dg Lie algebra, the structure of gm is simply given by the new differential
d+ [m,−] and the same Lie bracket.

3.3.1. dg operads. Let us first consider ordinary operads as a toy model.
Suppose P and Q are operads in the category of differential graded vector spaces. Since Q is

fibrant already, there is no need to pick a resolution (otherwise we would need to find a quasi-cofree
resolution). There are essentially two ways to construct a quasi-free resolution of P:

• When P is augmented by a map P→ ?, we use the bar-cobar construction Ω(B(P)).
• When P is Koszul, we may use Ω(P∨), where P∨ is the Koszul dual (P∨ is weakly equivalent

to B(P), but it is simpler).

Hence the mapping space will be captured by

(1) g = Hom(P̂,Q) (P̂ = Ω(C) for the cooperad C = P∨ or B(P)).

More concretely, the bar construction B(P) is a cooperad given as

B(P) = (Cofree(P̄[1]), ∂),

where P̄ is the kernel of the augmentation map P→ ?. Here, Cofree denotes taking the cofree co-
operad cogenerated by the argument. This means that we consider trees with vertices v decorated
by P(star(v)), like

P(star(v))

1 2

3 4.

5

The differential is defined as ∂ = dP + ∂′, where ∂′ is given by summing over the edges of the tree
and composing the decorations like

p′

p′′
7→ ± p′ ◦ p′′

The cocomposition is given by cutting the trees.
The dual construction is the cobar construction Ω. Given a differential graded cooperad C (like

B(P)), the cobar of C is given as

Ω(C) = (Free(C[−1]), ∂),
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where C = Coker(?→ C). Again Free denotes taling the free operad generated by the argument,
which means considering trees with vertices v decorated by C(star(v)) (the same picture as for
Cofree works). The differential is given as ∂ = dC + ∂′, where ∂′ is given by the sum over all
vertices of

c 7→ c′

c′′

where c cocomposes to
∑
c′ ⊗ c′′. There is a canonical quasi-isomorphism Ω(B(P))

∼−→ P, which
is given on generators B(P) by mapping

p 7→ p,

and killing all non-trivial trees. This is our cofibrant replacement of P, and it is always of the form
Ω(C) for a coaugmented cooperad C (C = P∨ or C = B(P)).

We are now trying to understand MC•(g) := MC(Ω(∆•)⊗̂g), where g is given by (1). Denote

Conv (C,Q) :=
∏
r

HomSr

(
C[−1](r),Q(r)

)
,

and note that for C as above this is just the definition of g spelled out. In fact, Conv(C,Q) is a
dg Lie algebra with the bracket

[f, g]

(
c

)
=
∑

µQ

 f(c′)

g(c′′)

− (−1)|f ||g| (f ↔ g) ,

where the cocomposition of C is expressed as

c 7→
∑ c′

c′′

Exercise 3.13. Check that the above formula defines a Lie bracket.

The differential is given by d = dC + dQ. Compatibility with the differntial of P̂ and Q amounts

exactly to the Maurer–Cartan equation. Suppose F : P̂ → Q is induced by f : C → Q. Compati-
bility says dQF = FdP̂, suppose c ∈ C then we have that

dQF (c) = dQf(c)

and

FdP̂(c) = F

dC(c) +
∑
± c′

c′′

 = f(dCc) +
1

2
[f, f ](c).

So we find that

dQF = FdP̂ =⇒ df +
1

2
[f, f ] = 0.

3.3.2. Hopf cooperads. Now suppose B and C are differential graded Hopf cooperads. We need to
take a cofibrant (free/quasi-free) replacement of B and a fibrant (cofree) replacement of C in the
category of dg Hopf cooperads. For B we take the Chevalley complex C(g) (here g is a cooperad
in dg Lie coalgebras). Specifically, a model for EHc

n will be given by C(Pn), where P∗n = (tn(r))r
is the family of Drinfeld–Kohno Lie algebras as follows: tn(r) is generated by the elements tij for
1 ≤ i 6= j ≤ r such that tij = (−1)ntji, [tij , tkl] = 0 when i 6= k and j 6= l and [tij , tkl + tkj ] = 0.
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For C we use the “W”-construction of Berger–Moerdijk. If B(Ω(C)) is gven by tree whose vertices
are labeled by c ∈ C and edges by E ∈ Ω(C), e.g.,

c ∈ C

E ∈ Ω(C)
.

Then W (C) is given by trees with vertices labeled by c ∈ C and edges labeled by α ∈ Ωpol([0, 1]) =
k[t, dt], e.g.,

c ∈ C

α ∈ Ωpol([0, 1])
,

and when we “shrink” an edge we see the cocomposition. The point is that B(Ω(C)) does not
have a good multiplication, while W (C) does (we are sweeping some small technical points under
the rug here). So it is a cooperad in dg algebras, where the product is defined by “pointwise”

mulitplication of labels on trees of the same shape. We check that W (C) is of the form B(W̊C)

for some operad W̊C (given by indeomposable elements of W (C)), consequently W (C) is fibrant.
In the end we have to analyze

HomdgHCoop(C(Pn){1},W (C)) ⊂ HomOp(C(Pn){1},W (C)).

Restricting to the generator Pn of C(Pn) and corestricting to the cogenerator W̊C of B(W̊C) =
W (C), the right hand side has the same information as

HConv
(
Pn, W̊C

)
:=
∏
r

HomSr

(
Pn(r), W̊C(r)

)
[1].

Proposition 3.14. There is dg Lie algebra structure on HConv
(
Pn, W̊C

)
such that the Maurer–

Cartan elements are in one to one correspondence with dg Hopf cooperad maps from C(Pn) to
W (C).

So (given this proposition holds) we have found our dg Lie algebra and we now need the rational
models for En.

Theorem 3.15 ([FW15]). The little disks operads LDn are rationally formal, i.e., we may take
the cohomology H∗(LDn,Q) = e∗n as a rational dg Hopf cooperad model for LDn.

Let us note that several versions of this theorem are already known.

n = 1: trivial
n = 2: Tamarkin [Tam03] (using a rational Drinfeld associator)
n ≥ 2 over R: Kontsevich [Kon99]
n ≥ 2 without 0-ary operations: Deduced from the previous by Salvatore
n ≥ 3: (with 0-ary operations which are replaced by a Λ-structure) Fresse–Willwacher.

If 4 divides n, there is an involution J on C modeling the “reflection” on e∗n.

Theorem 3.16 ([FW15]). For n ≥ 3 we have intrinsic formality over Q, that is, if C is a dg Hopf
cooperad such that its cohomology H∗(C) is isomorphic to e∗n, then we actually have C ' e∗n in the
homotopy category of dg Hopf cooperads. This morphism is:

• homotopically unique if 4 does not divide n− 3,
• unique in presence of an involution if 4 divides n− 3,
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The comparison of C(Pn) and e∗n goes as follows: (assuming n ≥ 2) we look at the dual
statement, and consider the map

en → C(tn), · ∧ · 7→ 1 ∈ C(tn(2)) = Sym(tn(2)[1]), [·, ·] 7→ t12.

By induction on r, we obtain H(tn(r)) ' en(r) so that the above is a quasi-isomorphism.

4. Connection to graph complexes

So let us show how to obtain graph complexes from the situation above. For simplicity we
consider the operad version first. The main players are the operad Graphsn

1 and its dual coop-
erad ∗Graphsn (so that (∗Graphsn)

∗
= Graphsn holds) introduced by Kontsevich. More precisely,

∗Graphsn(r) is given by k-linear combinations of isomorphism classes of graphs with r numbered
“external” vertices and ≥ 0 (unnumbered) “internal” vertices, such that

• internal vertices have valency ≥ 3, and
• every connected component has ≥ 1 external vertex.

For example, we have the following graph:

1

2

4

3
.

We set degree of a graph by

deg(Γ) = (number of internal vertices)(−n) + (number of edges)(n− 1).

The differential is given by

d

( )
= , d

(
i

)
=

i
,

d

(
j k

)
= 0.

Let us define an operad structure on Graphsn. The composition Γ ◦r Γ′ on Graphsn is given by
removing the r-th vertex of Γ and summing over all ways of reconnecting the pending edges, i.e.,

Γ

1 2 3

◦3
Γ′

1 2 3 4

=
∑ Γ

1 2
Γ′

3 4 5 6

Example 4.1. Consider the map Poisn → Graphsn characterized by

· ∧ · 7→ 1 2 , [·, ·] 7→ 1 2 .

We have compatibility [x1, x2 ∧ x3] = [x1, x2] ∧ x3 + [x1, x3] ∧ x2 since

( 1 2 ) ◦2 ( 1 2 ) = 1 2 3 + 1 2 3

There is a Hopf structure on ∗Graphsn induced by identifying external vertices, i.e

Γ

1 2 3

∧
Γ′

1 2 3

=

Γ

1 2 3

Γ′

.

This makes ∗Graphsn into a Hopf cooperad.

1Not to be confused with the more elementary graph operad Gra behind the complexes Gn.
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Theorem 4.2 (Kontsevich [Kon99], Lambrechts–Volić [LV14]). The maps

Poisn → Graphsn,
∗Graphsn → Pois∗n

are quasi-isomorphisms of dg Hopf (co)operads.

We actually need to understand the Hopf operad maps, but for simplicity let’s just look at
the operad maps. Note that em (either As or Poisn) is Koszul and its Koszul dual is given by
e∨m ' e∗m{m} (see for example [LV12, Chapter 7]). Then Ω(e∨m) is a cofibrant operad model for EHc

m

(or for H(LDm)), and Graphsn is a (automatically fibrant) operad model for EHc
n (or for H(LDn)).

We thus look at Ω(e∨m)→ Graphsn, and study

Conv(e∨m,Graphsn) =
∏
r

HomSr (e∨m(r),Graphsn(r)) '∏
r

(e∨m)
∗

(r)⊗Sr Graphsn(r) =
∏
r

em{m}(r)⊗Sr Graphsn(r).

Remark 4.3. In the Hopf operadic setting there are no simple factorizations like

P //

��

Q

?

??

since each P(r) and Q(r) should be a unital algebra. Instead we consider factorizations of the form

P //

""

Q

Com

<<

using the commutative algebra operad Com (recall that Com(r) = Q for all r).

Now we can twist by an Maurer–Cartan element α corresponding to

? : Ω(e∨m)→ Com→ Graphsn,

to obtain the deformation complex

Def(Ω(e∨m)
?→ Graphsn) := Conv(e∨m,Graphsn)α.

Elements of Conv(e∨m,Graphsn) are series of “graphs” with Gerstenhaber expression on the external
vertices, like

[ 1 2 ] 3 4, ∧
,

or Lie forests describing composition of · ∧ · and [·, ·] :

1 2 3 4 5

.

With the differential d = dGraphsn + dHarr where the Harrison differential dHarr is given by

dHarr =
∑

.
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Theorem 4.4 (“Hochschild–Kostant–Rosenberg”). Let m ≥ 2, and consider the subscomplex

fHGCm,n ⊂ Def
(

Ω(e∨m)
?→ Graphsn

)
spanned by graphs as above, such that

(1) external edges all have valency 1, and
(2) Lie trees are all trivial.

Then the inclusion is a quasi-isomorphism, and fHGCm,n is a sub dg Lie algebra.

It follows that we just need to study MC•(fHGCm,n).
Note that the subcomplex we are dealing with is just given by simple graphs like

.

So we have reduced the problem to a graph complex problem.

4.1. Obtaining information on graph cohomology. Recall that

fHGCm,n
∼−→ Def(Ω(e∨m)

?→ Graphsn) = Conv(e∨m,Graphsn)α,

where the map ? is the map factoring through Com and α is the Maurer–Cartan element corre-
sponding to ?. We have identification of S-modules e∨m = Poism (for m ≥ 2) and e∨1 = As, in which
the bracket becomes 0 under ?.

For m ≥ 2, fHGCm,n is a sub dg Lie algebra with bracket given by[
Γ , Γ̃

]
=
∑ Γ

Γ̃
∓ (Γ↔ Γ̃),

where the sum runs over all ways of connecting the “hairs”.

Remark 4.5. For m = 1, the Hochschild–Kostant–Rosenberg type theorem gives a quasi-isomor-
phism between Tpoly (polyvector fields) and Dpoly (polydifferential operators) which is a priori not
compatible with the Lie bracket. By Kontsevich’s theorem it does extend to an L∞ morphism.
However, T≥1

poly and D≥1
poly are not L∞ quasi-isomorphic (Dolgushev–Tamarkin–Tsygan). In fact,

T≥1
poly admits a one-parameter family of inequivalent L∞ structures. The Shoikhet L∞ structure

is the one compatible with D≥1
poly, and transferring this structure to fHGC1,n, the inclusion to

Def(Ω(As)→ Graphsn) becomes an L∞ quasi-isomorphism.

4.2. Hopf cooperad case. We are of course actually interested in the Hopf cooperad case.

Theorem 4.6 ([FW15]). Let HGC denote the subcomplex of fHGC spanned by the connected
graphs. There exists an L∞ quasi-isomorphism

HGCm,n
∼−→ HConv

(
Pn, W̊ em

)
when m ≥ 2, and an analogous one with respect to the “Shoikhet” structure for m = 1.

So we find that

Map
(
EHc
n ,EHc

m

)
' MC• (HGCm,n) ,

where for m = 1 we consider the Shoikhet L∞ structure.
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4.3. Space of the Maurer–Cartan elements. Now we have reduced the computation to con-
sidering the graph complex HGCm,n. For the space of Maurer–Cartan elements of this complex
we can say the following things.

(1) For HGCm,n with n − m ≥ 2 we proceed by degree counting. Since the degree of
genus(=loop order) g graphs is smaller than or equal to −g(n− 3)− 1 we find that there
is nothing (except for the trivial one) in degree 1 of MC (HGCm,n), where the ‘base point’
is supposed to be. Moreover, MC• (HGCm,n) is simply connected, since by Theorem 3.12
one has

πk (MC• (HGCm,n)) ' H1−k (HGCm,n) .

(2) For HGCn,n with n ≥ 2, we have the “easy” Maurer–Cartan elements coming from

L = λ ,

where λ is a scalar parameter in Q and is given by the bracket in en. This works
because

δ = 0 and [ , ] = 0.

So we can define the locally constant function F : MC•(HGCn,n) → Q by “picking” the
coefficient of the graph . Thus we should study F−1(λ) for various values of λ.

(3) For HGCn−1,n and n ≥ 3, we have similarly the Maurer–Cartan elements

Tλ =
∑
k≥1

λk

(2k + 1)! 21 3 4

. . .

2k + 1

for λ ∈ Q.

Exercise 4.7. Show that Tλ is a Maurer–Cartan element.

Again we construct locally constant functions J : MC•(HGCn−1,n)→ Q by picking out

the coefficient of . So we want to study also J−1(λ).

Theorem 4.8 (Fresse–Turchin–Willwacher [FTW15]). For any λ 6= 0, there are L∞ quasi-
isomorphisms

• Q[−1]⊕H(GC≥2
n )[−1]

∼−→ HGCλam,n for n ≥ 2,

• Q[−1]⊕H(GC≥2
n )[−1]

∼−→ HGCTλn−1,n for n ≥ 3,

• Q[−1]⊕H(GC≥2
n )[−1]

∼−→ HGC
T ′
λ

1,2, where the right hand side has the Shoikhet L∞ struc-
ture.

Here, the left hand side is considered as a trivial Lie algebra, and the complex GC≥2
n denotes(

G≥2
n

)∗
, where G≥2

n is given by graphs with valency greater than 2.

Corollary 4.9. For λ 6= 0, we have

F−1(λ) ' MC•
(
H(GC≥2

n )
)
' J−1(λ).

Remark 4.10. Description of J−1(0) and F−1(0) is still an open problem.

Corollary 4.11. If n > 2, when 4 does not divide n+ 1 we have

π0

(
MC•

(
H(GC≥2

n )
))

= 0,

and when 4 does divide n+ 1 we have

π0

(
MC•

(
H(GC≥2

n )
))

= Q.
If n = 2, we have

π0

(
MC•

(
H(GC≥2

2 )
))

= grt1

where grt1 denotes the Grothendieck–Teichmüller Lie algebra.

Theorem 4.12. We have the following isomorphisms:

H0(GC2) ' grt1, H(GC2, δ + [ ,−]) ' Q.
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Remark 4.13. • There is an embedding of the free Lie algebra Lie(σ3, σ5, . . .) into grt1, and
conjecturally this is isomorphism.

• The comparison of the above two cohomology groups means that the “loop classes” can
cancell some of the grt1-classes via the commutator.

• The remaining grt1-classes correspond to other Maurer–Cartan elements like∑
k

1

(2k + 1)!
.. (2k + 1 edges)

in a similar way. Thus, we can capture the negative degree classes.

5. Connections among the graph complexes of various type

This last part is based on joint work with Merkulov [MW15]. Consider the space of cyclic
words ⊕nV ⊗n/Cn with letters from some vector space V . Such structure is “governed” by the
prop(erad) of the ribbon graphs

RGra(m,n) =

〈
.. : m vertices, n holes

〉
+ sign rule.

The composition rule is given as follows: suppose we want to compute

1

2

◦2 1 1 .

The left graph becomes
1

2

,

which goes into the “hole 1” of the right graph, where we sum over the all possible ways to connect
the free edges to vertices: ∑

± .

By Chas–Sullivan [CS02], the properad of involutive Lie bialgebras map into RGra by

Lieb� → RGra, bra 7→ , cobra 7→ .

Remark 5.1. We also have a map from the properad of Lie bialgebras ∗ : Lieb→ RGra, given by

bra 7→ , cobra 7→ 0.

The corresponding deformation complex computes ⊕H∗(Mg,n)⊗Sn sgnn. Moreover, sgnn can be
removed by changing the degree convention in Lieb (cf. Kontsevich).

If we look at the properad map Lieb� → RGra given by the Chas–Sullivan correspondence, we
have

Def(Lieb� → RGra) = (RGC, δ +D), D


 =

∑
Note that the right hand side will be a quotient of the cohomology of moduli spaces.

Remark 5.2. The deformation complex

Def(Lieb�
Id−→ Lieb�) ' GCori

1 ' GC0

acts on Def(Lieb� → RGra). Starting from the classes in GCori
1 , which are like

,
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and one adds “hairs” to make it look like

.

The directed graph without cycles can be interpreted as composition rule in a properad. Moreover,
the correspondence

7→ , 7→
gives a ribbon graph, so for example the above graph gives

,

which is a cocycle in (RGC, δ +D).

Conjecture 5.3. The graph cohomology H(GC0) embeds into H(RGC, δ+D). Or, even more, this
is almost surjective.

Note that, if we instead consider the target Def(Lieb → RGra), this would be the case since
goes to 0.

5.1. Final remarks. With the sign convention of Kontsevich, there is a map of properads
Liebodd

∞ → RGra given by
n︷ ︸︸ ︷
..

..︸ ︷︷ ︸
m

7→


0 (m 6= 2),

..
(n edges, if m = 2 and n odd).

This would give new Maurer–Cartan elements.
As for the Chas–Sullivan map itself, Def(Lieb� → RGra) is given by (RGCJ~K, δ + D + D̃~),

where D̃~ is given by adding edges to connect holes.

Conjecture 5.4. The complex (RGCJ~K, δ +D + D̃~) is essentially acyclic.

There is a “stable” version of the ribbon graph complex (sRGC, δ) which captures the com-
pactification of the moduli.

Theorem 5.5. One has the isomorphism H(sRGC) ' H(RGC)⊕H(GC0).
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