
NONCOMMUTATIVE DIFFERENTIAL CALCULUS

BORIS TSYGAN, NOTES BY NIEK DE KLEIJN AND MAKOTO YAMASHITA

Abstract. This is a note from B. Tsygan’s lecture series which was part of masterclass “Alge-
braic structure of Hochschild complexes” at the University of Copenhagen in October 2015.

From the course description: I will review the current state of noncommutative differential

calculus. The term stands for the theory that generalizes classical algebraic structures arising in
differential calculus on manifolds to make them valid for any associative algebra (or, more gen-

erally, any differential graded category) instead of the algebra of functions on a manifold. The
role of differential forms and multi-vector fields in this new theory is played by the Hochschild

complexes of our algebra. The generalized algebraic structures from classical calculus are pro-

vided by the action of various operads on these complexes. I will summarize the current state of
the subject as developed in the works of Kontsevich and Soibelman, Tamarkin, Willwacher, and

other authors, as well as my own works in collaboration with Dolgushev, Nest, and Tamarkin.

1. Hochschild and Cyclic Homologies

1.1. Basic definitions. Throughout the course k denotes a field of characteristic 0. Let A be a
unital associative algebra over k. We put Ā := A/k · 1 and

Cn(A) := Cn(A,A) = A⊗ Ā⊗n

for each integer n ≥ 0. Define b : Cn(A)→ Cn−1(A) and B : Cn(A)→ Cn+1(A) by

b(a0 ⊗ . . .⊗ an) =

n−1∑
j=0

a0 ⊗ . . .⊗ ajaj+1 ⊗ . . . an + (−1)nana0 ⊗ a1 . . .⊗ an−1,

B(a0 ⊗ . . .⊗ an) =

n∑
j=0

(−1)nj1⊗ aj ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ aj−1.

Note that we have bB +Bb = b2 = B2 = 0.

Definition 1.1. Let u be a formal variable of degree |u| = −2. We consider the following
complexes:

(reduced) Hochschild complex : (C•(A), b),
negative cyclic complex : CC−• (A) := (C•(A)JuK, b+ uB),
periodic cyclic complex : CCper

• (A) := (C•(A) ((u)) , b+ uB),
cyclic complex : CC•(A) := (C•(A) ((u)) /uC•(A)JuK, b+ uB).

Their homology groups are respectively denoted by HH•(A), HC−• (A), HCper
• (A), and HC•(A).

Here, C•(A)JuK is the space of formal power series in the formal variable u with coefficients
in C•(A). More formally, it is just the infinite direct product C•(A)∞, where (x0, x1, · · · ) for
xn ∈ C•(A) corresponds to the series

∑∞
n=0 xnu

n. Similarly, C• ((u)) = C•JuK[u−1] denotes the
space of Laurent power series

∑∞
n=−∞ xnu

n with xn = 0 for n� 0.

The diagram of Figure 1 clears up the above definitions. Here, the Hochschild complex is given
by the column marked (∗), the negative cyclic complex is obtained by considering this column and
the ones to the right of it, the cyclic complex is obtained by removing the columns to the right of
(∗), and the total double complex gives us the periodic cyclic complex.

Remark 1.2. It is sometimes convenient to work with the unreduced Hochschild complex Cfull
• (A) =

A⊗•+1 with the Hochschild differential b given by the same formula as above. Note that the obvious
surjection Cfull

• (A) → C•(A) admits a homotopy inverse coming from insertion of unit, and the
operator B lifts to a differential on Cfull

• (A).
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Figure 1. periodic cyclic complex

1.2. Operations. In general, we can consider the compositions of the following basic operations:

• cyclic permutation a0 ⊗ · · · ⊗ an 7→ an ⊗ a0 ⊗ · · · ⊗ an−1,
• taking product: a0 ⊗ · · · ⊗ an 7→ a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an,
• insertion of unit: a0 ⊗ · · · ⊗ an 7→ a0 ⊗ · · · ⊗ aj ⊗ 1⊗ aj+1 ⊗ · · · ⊗ an.

The operators b and B are examples of operations on Cfull
• (A). More generally, an operation would

look like

a0 ⊗ . . .⊗ an 7→ 1⊗ ajaj+1aj+2 ⊗ 1⊗ aj+3 ⊗ . . .⊗ 1⊗ an−1 ⊗ ana0 ⊗ a1a2 ⊗ . . .⊗ aj−2aj−1.

Let us denote the sets of the operations as above by

Λ(n,m) :=
{

“operation”A⊗n+1 → A⊗m+1
}
.

We obtain a category with objects 0, 1, 2, . . . and morphism sets Λ(n,m), which is Connes’s cyclic
category Λ.

Theorem 1.3 ([Con83]). The category Λ is equivalent to its opposite Λop.

Proof. Suppose that A has a trace Tr: A/[A,A]→ k, and consider the pairing

〈a0 ⊗ . . .⊗ an, b0 ⊗ . . .⊗ bn〉 := Tr(a0b0 . . . anbn).

When φ is in Λ(n,m), we can find a φ∗ ∈ Λ(m,n) such that

〈φ(a0 ⊗ . . .⊗ an), b0 ⊗ . . .⊗ bm〉 = 〈a0 ⊗ . . .⊗ an, φ∗(b0 ⊗ . . .⊗ bm)〉

by an “universal procedure” which makes sense independent of Tr. This defines a contravariant
functor from Λ to itself. Moreover this is involutive, that is φ∗∗ = φ, which shows the assertion. �

Example 1.4. Suppose φ(a0 ⊗ . . .⊗ a3) = a2a3 ⊗ 1⊗ a0a1 ⊗ 1. Then we have

〈φ(a0 ⊗ . . .⊗ a3), b0 ⊗ . . .⊗ b3〉 = Tr(a2a3b0b1a0a1b2b3) = Tr(a0a1b2b3a2a3b0b1),

by traciality. From this we find that φ∗(b0 ⊗ . . .⊗ b3) = 1⊗ b2b3 ⊗ 1⊗ b0b1.
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1.3. Hochschild chains and forms.

Definition 1.5 (Noncommutative forms). Let Ω•(A) denote the algebra generated by the symbols
a and da for a ∈ A subject to the following relations.

• da is k-linear in a, that is, d(λa+ µb) = λda+ µdb,
• d1=0,
• the Leibniz rule d(ab) = adb+ (da)b holds, and
• the symbols a ∈ A satisfy the relations in the algebra A.

Using the Leibniz rule, any element of Ω•(A) can be presented as a linear combination of
a0da1 · · · dan. We endow Ω•(A) with the grading by |a0da1 . . . dan| = n, and the differential d
characterized by

d : a 7→ da 7→ 0, d(ω1ω2) = (dω1)ω2 + (−1)|ω1|ω1dω2

for ω1, ω2 ∈ Ω•(A) and ω1 homogeneous. This satisfies d2 = 0, hence Ω•(A) is a differential graded
algebra. Note also that

Ωn(A) = A(dA)n ' A⊗ Ā⊗n = Cn(A),

which implies Ω•(A) ' C•(A). Under this isomorphism we find that d is something like B, in the
sense that

a0 ⊗ . . .⊗ an 7→ 1⊗ a0 ⊗ . . .⊗ an
corresponds to

d : a0da1 . . . dan 7→ da0da1 . . . dan.

In fact, there is also an analog ι∆ (Ginzburg–Schedler [GS12a]) of b on the Ω•(A) side as follows.
Imagine that we have a trace Tr again, and consider another pairing

〈a0 ⊗ . . .⊗ an, b0 ⊗ . . .⊗ bn〉 = Tr (b0a0[a1, b1] . . . [an, bn])

Then we define ι∆ to be the dual of B, i.e., the formula

〈a0 ⊗ . . .⊗ an+1, B(b0 ⊗ . . .⊗ bn)〉 = 〈i∆(a0 ⊗ . . .⊗ an+1), b0 ⊗ . . .⊗ bn〉
defines ι∆. Note that similarly we have

〈a0 ⊗ . . .⊗ an, b(b0 ⊗ . . .⊗ bn+1)〉 = 〈d(a0 ⊗ . . .⊗ an), b0 ⊗ . . .⊗ bn+1〉.
Proposition 1.6. The “Hochschild–Kostant–Rosenberg” map

φnc
HKR : C•(A)→ Ω•(A), a0 ⊗ . . .⊗ an 7→

1

(n+ 1)!

n∑
j=0

(−1)(n−j)j(daj+1 . . . dan)a0da1 . . . daj

intertwines b with ι∆ and B with d.

We thus obtain a map of complexes

φnc
HKR : (C•(A)JuK, b+ uB)→ (Ω•(A)JuK, ι∆ + ud).

However, one should be aware that φHKR is not an isomorphism on homology.

Theorem 1.7 ([GS12a]). The map φnc
HKR becomes a quasi-isomorphism after inverting u, i.e.,

after passing to the periodic cyclic complex.

Remark 1.8. When A is commutative, imposing dadb = −dbda, we obtain the space of Kähler
forms Ω•A/k. The composition of the quotient map

(Ω•(A)JuK, ι∆ + ud)→ (Ω•A/kJuK, uddR)

with φnc
HKR is a quasi-isomorphism when A is regular (smooth Nötherian, or projective limits of

such).

Theorem 1.9 ([GS12a]). The map ι∆ descends to a linear map

Ω•(A)
/

[Ω•(A),Ω•(A)] → Ω•+1(A).

Its kernel is isomorphic to the Hochschild homology of A:

Ker
(

Ω•(A)
/

[Ω•(A),Ω•(A)] → Ω•+1(A)
)
' HH•(A).
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2. Curved structures

2.1. Curved differential graded algebras and modules. The following notion adds an ana-
logue of curvature to differential graded algebras.

Definition 2.1 ([GJ90,Pos93]). A (nonunital) curved differential graded algebra (curved dga for
short) is a triple (A•, D,R), where

• A• =
⊕
n

An is a graded algebra.

• D : A• → A•+1 is a linear map satisfying D(ab) = (Da) · b+ (−1)|a|a ·Db.
• R is an element of A2 satisfying D2(x) = ad(R)(x) = [R, x] and D(R) = 0.

Note that D2 = ad(R) alone implies ad(D(R)) = 0, since one has [D,D2] = 0.

Definition 2.2. A curved morphism (A•, DA, RA) → (B•, DB , RB) is a pair (β, F ), where
F : A• → B• is a morphism of graded algebras (|F | = 0), and β is an element of B1 such
that

[F,D] := F ◦DA −DB ◦ F = ad(β) ◦ F, F (RA)−RB = DBβ + β2

holds. Again looking at [F,D2], the first condition already implies that F (RA)−RB− (DBβ+β2)
commutes with the image of F .

Example 2.3. Suppose that F is invertible. Then the above means that

FDAF
−1 = DB + ad(β).

Definition 2.4. A curved module over a curved dga (A•, DA, R) is a pair (V •, DV ), where

• V • is a graded A•-module,
• DV : V • → V •+1 a linear map satisfying DV (av) = (DAa)v + (−1)|a|aDV v for all a ∈ A

and v ∈ V •,
• D2

V v = Rv.

2.2. Curved differential graded categories and modules. Let us give a categorified notion
of the curved dg algebras and modules.

Definition 2.5. A curved differential graded category A• is given by the following data:

• a set of objects X = ob(A•) 3 X,Y, . . .,
• a graded vector space A•(X,Y ) for each X,Y ∈ X ,
• an associative linear map A•(X,Y )⊗A•(Y,Z)→ A•(X,Z) of degree 0,
• an element 1X ∈ A0(X,X) for all X ∈ X , which is a unit for the above product map,
• a linear map DX,Y : A•(X,Y )→ A•+1(X,Y ) for all X,Y ∈ X ,
• an element RX ∈ A2(X,X) for all X ∈ X ,

such that
D(a1a2) = (Da1)a2 + (−1))|a1|a1Da2, D2a = RXa− aRY

holds for for all a, a1 ∈ A•(X,Y ), a2 ∈ A•(Y, Z) and X,Y, Z ∈ X .

Definition 2.6. A curved differential graded module over a curved dg category A• is given by the
following data:

• a family of graded vector spaces V •(X) for X ∈ X ,
• a family of linear maps A•(X,Y )⊗ V •(Y )→ V •(X) for X,Y ∈ X ,
• a family of linear maps DV (X) : V •(X)→ V •+1(X) for X ∈ X ,

such that

• (a1a2)v = a1(a2v) for all a1 ∈ A•(X,Y ), a2 ∈ A•(Y,Z), v ∈ V •(Z) and all X,Y, Z ∈ X
• DV (X)(av) = (Da)v + (−1)|a|aDV (Y )v for all a ∈ A•(X,Y ), v ∈ V •(Y ) and X,Y ∈ X
• D2

V (X) = RXv for all v ∈ V •(X) for all X ∈ X .

Definition 2.7. Let (A, DA, RA) and (B, DB, RB) be curved dg categories with object sets X and
Y respectively. A curved differential graded functor from A to B is given by the following data:

• a map F : X → Y
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• a linear map F : A•(X,Y )→ B•(FX,FY ) for all X,Y ∈ X
• elements βX ∈ B1(FX,FX) for each X ∈ X .

such that

• F (a1a2) = F (a1)F (a2) for all a1 ∈ A•(X,Y ), a2 ∈ A•(Y,Z) and all X,Y, Z ∈ X
• (FDA −DBF )(a) = βXF (a)∓ F (a)βY for all a ∈ A•(X,Y ) and all X,Y ∈ X
• F (RA,X)−RB,FX = “exercise”

Example 2.8 (curved dg category). Denote by Premod(k) the dg category with:

• objects are the pairs (V •, D), where V • is a graded vector space and D is a degree 1
endomorphism of V • →,

• morphisms are given by A•((V •1 , D1), (V •2 , D2)) = Hom•(V2, V1),
• dϕ = D1◦ϕ∓ϕ◦D2 is the derivation A•((V •1 , D1), (V •2 , D2))→ A•+1((V •1 , D1), (V •2 , D2)),

and
• R(V,D) is given by D2 ∈ Hom2(V •, V •) for all (V •, D).

Exercise 2.9. Show that a curved dg module over a curved dg category is given by a curved dg
functor

F : A• → Premod(k),

where the βX ∈ B1(FX,FX) are given by the DFX .

3. Hochschild and cyclic homology for curved dg categories

Next we are going to define the Hochschild and cyclic homology for curved dg categories. Let
us fix a curved dg category (A•, D,R).

Definition 3.1. We put

C•(A•) :=
⊕
n≥0

X0,...,Xn∈X

A•(X0, X1)⊗ Ā•(X1, X2)⊗ . . .⊗ Ā•(Xn, X0),

where

Ā•(X,Y ) :=

{
A•(X,Y ) (X 6= Y )
A•(X,X)

/
k · 1X (X = Y ).

We have the following operations on C•(A•):

|a0 ⊗ a1 ⊗ . . .⊗ an| = n−
n∑

i=0

|ai|,

b(a0 ⊗ . . .⊗ an) =

n−1∑
j=0

±a0 ⊗ . . .⊗ ajaj+1 ⊗ . . .⊗ an

± ana0 ⊗ a1 ⊗ . . .⊗ an−1,

d(a0 ⊗ . . .⊗ an) =

n∑
j=0

±a0 ⊗ . . .⊗Daj ⊗ . . .⊗ an

LR(a0 ⊗ . . .⊗ an) =

n∑
j=0

±a0 ⊗ . . .⊗ aj ⊗Rxj+1
⊗ aj+1 ⊗ . . .⊗ an.

The signs are determined by the following rules. When one reads from the left to the right on the
expression a0 ⊗ a1 ⊗ . . .,

• passing an ai gives a factor of (−1)|ai|,
• passing an ⊗ give a factor of −1.

Similarly, to bring an from the right to the left, we will have the factors (−1)|an||ai| from the ai
and (−1)|an||⊗| from the ⊗’s.
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Now put b := b+ d+ LR, and note that b2 = 0. We also consider

B(a0 ⊗ . . .⊗ an) =

n∑
j=0

±1⊗ aj ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ aj

where we treat “aj⊗” as an object of degree |ai|+ 1.

3.1. Chern character. Suppose that A• is an exact category, so that the algebraic K-groups
Kj(A) for j = 0, 1, . . . make sense through Quillen’s Q-construction. We want to define the “Chern
character” map from these groups to the negative cyclic cohomology groups of A•.

3.1.1. Flat case. Suppose that R = 0. Then for X ∈ X we see that

Ch(X) = 1X ∈ C0(A) = A•(X,X)⊗ Ā⊗0

defines a (b, B)-cycle, since
Ch(X) ∈ Ker b ∩KerB ∩Ker d.

So we find the map Ch: K0(A)→ HC−0 (A).

3.1.2. Curved case. Let us treat the general case R 6= 0. Put CC−• (A) := (C•(A)JuK,b + uB).
We want to find maps

Ch: Kj(A)→ HC−j (A),

which would be analogue of the Chern(–Connes–Karoubi) character maps [Con85, Kar87] for al-
gebras. In particular, for j = 0 we want to find Ch(X) ∈ CC−0 (A) such that (b +uB) Ch(X) = 0.

How do we find such Ch(X)? Chasing the diagram, we find

1X
LR // 1X ⊗RX

u−1RX

uB

OO

b
// u−1RX ⊗RX

?something?

uB

OO

So the ansatz is Ch(X) = 1X + u−1RX+something. Since the terms in the above diagram only
contain RX , let us look at the commutative ring k[R]. Then we have the Hochschild–Kostant–
Rosenberg quasi-isomorphism

CCper
• (k[R])→ (Ω•k[R]/k ((u)) , uddR + dR∧).

Here, CCper
• (k[R]) has the differential b+uB+“LR”, corresponding to the b operator. We see that

the naive solution to (ud+ dR∧)x = 0 in Ω•k[R]/k ((u)) is x = e−
R
u . So we are led to the formula

Ch(X) = e−
RX
u +O,

where O is something in the kernel of the HKR map. Note that the above expression actually
makes sense when R is nilpotent.

4. Operations on Hochschild/cyclic complexes

4.1. Hochschild cochains. Let A• be a graded vector space, and let us put

C∗ (A•, A•) =
∏

n+m=∗,
n≥0

Homm
(
A⊗n, A

)
.

Following the case of associative algebras, we call this the space of Hochschild cochains. We can
consider the brace operation (due at least to Gerstenhaber): given two cochains ϕ : (A•)

⊗n → A

and ψ : (A•)
⊗m → A, one obtains ϕ{ψ} : (A•)

⊗n+m−1 → A defined by

ϕ{ψ}(a1, . . . , an+m−1) =
∑
j

±ϕ(a1, . . . , aj , ψ(aj+1, . . . , aj+m), . . . , an+m−1).
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This induces the Gerstenhaber bracket of Hochschild cochains,

[ϕ,ψ]G = ϕ{ψ} ± ψ{ϕ}.
For example, when A• = A0, we have [ϕ,ψ]G = ϕ ◦ ψ − ψ ◦ ϕ for ϕ,ψ ∈ C1(A,A).

Theorem 4.1 ([Ger63]). The bracket [·, ·]G is a graded Lie bracket on C∗+1(A•, A•).

Let m = m0 +m1 +m2 + . . . with mi ∈ Hom2−n
(

(A•)
⊗n

, A•
)

be a cochain of ∗-degree 2. In

other words, we have

m0 ∈ A2, m1 : A• → A•+1, m2 : A• ⊗A• → A•, m3 : (A•)
⊗3 → A•−1

and so on. Then, if mi = 0 for i ≥ 3 and m{m} = 0, we have a structure nonunital curved
dg algebra on A with R = m0, D = m1, and xy = m2(x, y). Thus, without restriction on the
vanishing of mi, we can say that m{m} = 0 defines a structure of curved A∞ algebra. Note that
m has degree 1 in the graded Lie algebra C∗+1(A•, A•), hence this condition can be also expressed
as [m,m]G = 0.

We can generalize the above construction to obtain more operations by putting

ϕ{ψ1, . . . , ψm}(a1, . . . , aN ) =∑
ji

±ϕ(a1, . . . , aj1 , ψ1(aj1+1, . . . , aj2), aj2+1, . . . , ψm(aj2m−1+1, . . . , aj2m), aj2m+1, . . . , aN )

for ϕ,ψ1, . . . , ψm ∈ C∗(A•, A•), which yield maps

C∗ ⊗ (C∗)
⊗m → C∗

satisfying some interesting algebraic relations called a brace algebra [GV95].

4.2. Categorifying brace operations. Note that we can also consider the cochain space for
categories as

C∗ (A•,A•) =
∏
n≥0,

x0,...,xn,
m+n=∗

Homm (A•(x0, x1)⊗ . . .⊗A•(xn−1, xn),A•(x0, xn))

for a category A• enriched by graded vector spaces. What does the brace algebra structure on
this space capture? The answer to this question can be understood with insight from [Tam07].

The underlying fundamental scheme is the formalism of 2-categories. Recall that usual cate-
gories form a 2-category as follows:

• 0-cells are categories C,D, . . .,
• 1-morphisms/1-cells between the 0-cells C and D are functors F : C → D,
• 2-morphisms/2-cells between the 1-morphisms F,G : C → D are natural transformations
η : F → G.

The analogue of this for dg categories was clarified in an article in [Tam07]. In our context, we
should consider the following “pre curved dg-2-category”:

OBJECTS (0-cells): A,B, . . . algebras (or more generally dg categories, A∞ categories. . .),
MORPHISMS : a curved dg category C•(A,B), given by

objects (1-morphisms): linear maps f : A→ B.

morphisms (2-morphisms): C•(f, g) =
∏
n≥0

Hom(A⊗, B), with the differential fδg given

by

fδg ϕ(a1, . . . , an+1) = f(a1)ϕ(a2, . . . , an+1) +
∑
±ϕ(a1, . . . , ajaj+1 . . . , an+1)

± ϕ(a1, . . . , an)g(an+1).

The composition C•(f, g)⊗ C•(g, h)→ C•(f, h) is given by the cup product

ϕ ∪ ψ(a1, . . . , an+m) = ±ϕ(a1, . . . , an)ψ(an+1, . . . , an+m).
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One immediate consequence of the above definitions is the following Leibniz rule:

fδh(ϕ ∪ ψ) = ( fδg ϕ) ∪ ψ ± ϕ ∪ ( gδh ψ).

Note also that ( fδg)
2
ϕ = ρfϕ ∪ ϕ− ϕ ∪ ρg holds for the “Quillen curvature form”

ρf (a1, a2) = f(a1)f(a2)− f(a1a2)

in C2(A,B). Observe that fδf ρf = 0.

Exercise 4.2. Show that if A = B and f = g = IdA, then fδg = [m2, ·]G = δ.

Let fi : A → B (i = 0, 1, . . . , n) and gi : B → C (i = 0, 1) be linear maps, and consider the
‘cochains’ φi ∈ C•(A,B)(fi−1, fi) and ψ ∈ C•(B,C)(g0, g1). Then we can define the “brace”
operation

A

f0

ϕ1 ⇓

ϕ2 ⇓

...

ϕn ⇓

fn

B

g0

ψ ⇓

g1

C 7→ A

‖
‖

ψ{φ1, . . . , φn}
‖
⇓

g0 ◦ f0

g1 ◦ fn

C

by the formula

ψ{ϕ1, . . . , ϕn}(a1, a2, . . . , aN ) =
∑
±ψ(f0(a1), . . . , f0(ai1), ϕ1(ai1+1, . . . , ai2), f1(ai2+1), . . . ,

f1(ai3), ϕ2(ai3+1, . . . , ai4), . . . , ϕn(ai2n−1+1, . . . , ai2n), fn(ai2n+1), . . . , fn(aN )).

The corresponding “Steenrod formula” is

δg0◦f0 g1◦f1 (ψ{ϕ})− ( δg0 g1ψ){ϕ}+ ψ{ δf0 f1ϕ} = (ψf1) ∪ (g0ϕ)∓ (ψf0) ∪ (g1ϕ),

where (ψf0)(a1, . . .) is given by ψ(f0(a1), . . .). Thus, given the input as in Figure 2a, the right
hand side of the Steenrod formula is represented by Figure 2b.

•
f0

ϕ⇓
f1

•

g0

ψ⇓
g1

•

(a)

• •±

(b)

Figure 2. Steenrod formula

To make the braces a multilinear operation, we consider the bar complex. When A• is a dg
category, we can consider a new dg cocategory Bar(A•) which has the same objects X,Y, . . . is A,
but

(1) Bar(A•)(X,Y ) =
⊕
n≥1,

X1,...,Xn−1

A•(X,X1)⊗ . . .⊗A•(Xn−1, Y ),

with differential

(a1| . . . |an)
∂Bar7−→

∑
±(a1| . . . |ajaj+1| . . .) +

∑
±(a1| . . . |daj | . . .) +

∑
±(a1| . . . |aj |RXj

| . . .)
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and cocomposition

Bar(A•)(X,Z)
∆XY Z→ Bar(A•)(A, Y )⊗ BarA•(Y,Z)

given by

(a1| . . . |an) 7→
∑
xj=y

(a1| . . . |aj)⊗ (aj+1| . . . |an).

Remark 4.3. Historically the name “bar” refers to the shorthand | for the tensor product in the
expression (a1| . . . |an).

So we get a dg (co)functor

Bar C•(A,B)⊗ Bar C•(B,C)→ Bar C•(A,C)

where the left hand side is the cocategory with the objects f ⊗ g (formal symbols). The functor
is given on objects by

f ⊗ g 7→ (g ◦ f : A→ C)

and on morphisms by

(ϕ1| . . . |ϕn)⊗ (ψ1| . . . |ψm) 7→
∑
∓(ϕ1| . . . |ϕi1 |ψ1{ϕi1+1, . . . , ϕi2}|ϕi2+1| . . .).

In terms of pictures, Figure 3a corresponds to ψj{ϕik , . . . , ϕil}, and Figure 3b corresponds to gϕ.
In the end we have constructed a category in cocategories.

ϕik ⇓

...

ϕil ⇓

ψj ⇓

(a)

ϕ ⇓
g

(b)

Figure 3. brace product

5. A Two-category (in a strictly defined weaker sense)

5.1. Cobar category. We should find out the structure of the bar-cobar construction. As before,
the case of algebras gives a guiding principle. In that case we have equivalences

C•(Bar(A)) ' C•(A), CC•(Bar(A)) ' CC−• (A).

Here, the left hand sides are the Hochschild and cyclic complexes of the bar coalgebra, see for
example [Kha97]. Note that C•(Bar(A)) can be regarded as the bar-cobar construction on A.
The reason of these equivalences boils down to the fact that Bar(A) has cohomological dimension
1, so that the Hochschild complex can be replaced by Quillen’s X-complex [Qui88]. Replacing
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A with the system C•(A,B), we obtain a A∞-category with morphism sets CC−• (C•(A,B)), and
A∞-module category given by the CC−• (A). This structure is induced from

Bar(A)⊗ Bar C•(A,B)→ Bar(B).

This formalism specializes to the A∞-algebra CC−• (C•(A,A)) acting on CC−• (A) [TT05].
More systematically, we can work with the cobar construction at the categorical level. When

D is a cocategory, the morphism space in CobarD is defined by the same formula as (1). It
has a differential induced by the cocomposition in D, and the composition of morphisms is the
concatenation of tensors. We can then take C •(A,B) = Cobar Bar C•(A,B), which is quasi-
isomorphic to C•(A,B). Then C can be regarded as a 2-category, or a category in dg algebras.

Definition 5.1. For coalgebras B1 and B2, we denote

B1 ⊗B2 := B+
1 ⊗B

+
2 /k ⊗ k .

Caution 5.2. Although the shuffle map (Eilenberg–Zilber equivalence)

Cobar (B1 ⊗B2)→ Cobar(B1)⊗ Cobar(B2),

is a morphism of algebras, the map in the other way (Alexander–Whitney map)

Cobar(B1)⊗ Cobar(B2)→ Cobar (B1 ⊗B2)

is not.

Now we are ready to present the higher version of C .

• Given algebras A1, A2, . . ., consider the dg category

C •(A1 → A2 → . . .→ An) = Cobar (Bar C•(A1, A2)⊗ . . .⊗ Bar C•(An−1, An)) .

• Any way of composing gives rise to a dg functor. For example,

(A1 → A2 → A3 → A4 → A5) −→ (A1 → A3 → A5)

gives
C •(A1 → . . .→ A5)→ C •(A1 → A3 → A5),

through Bar (C•(A1, A2))⊗Bar (C•(A2, A3))→ Bar (C•(A1, A3)). These are operations of
type I.

• The operations of type II are given by the dg functors

(2) C •(A1 → . . .→ An)
qis−→ C •(A1 → . . .→ Am)⊗ C •(Am → . . .→ An)

for all 1 < m ≤ n, induced by the morphism of dg categories

Cobar(B1 ⊗B2)→ Cobar(B1)⊗ Cobar(B2).

Here, the categories on both sides of (2) have the same set of objects. Hence “qis” just
means that it induces quasi-isomorphisms on morphism complexes.

The operations of type II have coassociativity, and the two kinds of operations are compatible
(cf. Leinster [Lei99]).

Let Ek denote a cofibrant replacement of the chain operad of little disks C−•(LDk). When
A = Ai and A → A is IdA, we obtain an action of E1 ⊗ E1 on C∗(A,A) through the above two
kinds of operations. Note that one has weak equivalence1 E1⊗E1 ' E2 (cf. [Lur14, Section 5.1.2]),
i.e.,

C−•

  ' C−•

( )
.

This explains the the following theorem.

Theorem 5.3 ([Tam98, Hin03]). C•(A,A) has a structure of homotopy Gerstenhaber algebra,
whose underlying L∞ structure is (δ, [·, ·]G).

1The quasi-isomorphism map of operads have the same (essential) ambiguity as the Grothendieck–Teichmüller

group [Kon99].
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So (C•(A,A),∪, [·, ·]G) is a homotopy Gerstenhaber analogue of the Gerstenhaber algebra of
polyvector fields (

∧•
TX ,∧, [·, ·]Sch). Similarly, C−•(A) is an analog of Ω−•X [Tsy99].

5.2. 2-category with trace.

Definition 5.4. A 2-category with a trace is given by:

objects: A,B, . . ..
1-morphisms: categories C(A,B) and functors ◦ : C(A,B)⊗ C(B,C)→ C(A,C).
2-morphisms: morphisms in C(A,B).
trace: functors TR: C(A,A)→ k-mod endowed with:

• natural isomorphism TR(M ◦N) ' TR(N ◦M) for M ∈ C(A,B) and N ∈ C(B,A),
• natural isomorphism TR(M1 ◦ M2,M3) ' TR(M2 ◦ M3,M1) compatible with the

above.

This definition is motivated by the following example.

Example 5.5. The k-algebras form a 2-category, by the following convention:

objects: algebras A,B, . . ..
1-morphisms: bimodules MA B , with composition M ◦N = M ⊗B N .
2-morphisms: (A,B)-bimodule maps ϕ : M → N .

Then, if A is a subalgebra of B (with inclusion denoted by i) and there is another morphism
f : A→ B, we have the bimodule Bi f over A, where a1 · b · a2 = a1bf(a2). Note that we have

ExtA⊗Aop

(
Bi f , Bi g

)
' HH•

(
A, Bf g

)
.

The trace functor is given by

TR(M) = M
/

[A,M ] = HH0(A,M),

and the natural isomorphism TR(M ◦N)→ TR(N ◦N) is given by [x⊗ y] 7→ [y ⊗ x].

The correspondence A  (C•(A,A),C−•(A)) can be understood within the framework of 2-
category with trace as in Definition 5.4, but in a weaker (Leinster) sense.

The pairs (C•(A,A),C−•(A)) should have a structure of algebra over the 2-colored operad

×

The first part is LD1, which encodes the associative/A∞-algebras. In genera, the algebras over
this operad are pairs (A,M), where

• A is an associative algebra, and
• M receives an M -valued “trace” map A⊗n →M .

This gives rise to the algebra (C•(A,M),C−•(A,M)) over the 2-colored operad LDC (little disk
cylinder):

C−•



1

2

3

4

5


= LDC(c, c, c, c, c, a; a) corresponds to (C•)

⊗5 ⊗ C−• → C−•.
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Another example is

C−•



1

2

3

4


= LDC(c, c, c, c; c) corresponds to (C•)

⊗4 → C•.

The formality theorem could be state as

LCD
∼−→ Calc,

where the right hand side is the 2-colored operad which acts on
(∧•

TX ,Ω
−•
X

)
[TT00,Tsy04].

Example 5.6 (Homotopy 2-category with trace). Let f : A → A be an algebra endomorphism,
so that it fits in the scheme of Example 5.5:

A
Id
// A.

foo

We set Tr(Id) = C•(A,A) and Tr(f) = C•(A,Af ). There are two maps from C•(A,Af ) to itself,
Id and

f : a0 ⊗ a1 ⊗ · · · 7→ f(a0)⊗ f(a1)⊗ · · · .

Then Tr(f ◦ Id) ' Tr(Id ◦ f) indicates that these should be homotopic. Indeed, with

Sf : C• → C•+1, a0 ⊗ . . .⊗ an 7→
∑
±1⊗ aj ⊗ . . .⊗ a0 ⊗ f(a1)⊗ . . .⊗ f(aj−1)

we have [b, Sf ] = Id− f .

More generally, given algebra homomorphisms

A
f
// B,

goo

we can put

MA B := Af(A) B , NB A := Ag(B) A.

So M ⊗B N = Agf(A) A and N ⊗A M = Bfg(B) B and there are equivalences

TR(M ⊗B N) =
(
C•

(
A, Agf

)
, bgf

)
ΦM,N

��

TR(M ⊗B N) =
(
C•

(
B, Afg

)
, bfg

)ΦN,M

OO

(the complexes on the right are usual Hochschild complexes for bimodules) given by

ΦM,N (a0 ⊗ . . .⊗ an) = f(a0)⊗ . . .⊗ f(an), ΦN,M (b0 ⊗ . . . bn) = g(b0)⊗ . . .⊗ g(bn).

Here, the homotopy inverse of ΦM,N is given by g, and vice versa so that gf − Id is the boundary
of “ Bfg ”.
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5.3. Curved case. Recall from last time the definition of the curved dg category C•(A,B) (with
objects linear maps A→ B). Let’s try to make sense of

CC−• (A)⊗ CC−• (C•(A,B))→ CC−• (B).

Then what should be the image of (a0 ⊗ . . .⊗ an)⊗ Ch(1f )? For any linear map f : A→ B, one
(formally) obtains a map

f : CCper
• (A)→ CCper

• (B)

which makes sense if

Rf (a1, a2) := f(a1a2)− f(a1)f(a2)

has values in a nilpotent ideal I ⊂ B. In this case f is actually defined (cf. Goodwillie’s theo-
rem [Goo85]). Now consider the same space with two products, i.e A1 = (A, ·1) and A2 = (A, ·2),
and the map f = Id: A→ A. Then if Rf takes values in a nilpotent ideal (like for deformations)
we have that CCper

• (A1) ' CCper
• (A2).

5.4. Conclusion. Differential graded categories appear in many context

algebra
++

geometry // dg categories,

topology

33

and as Bertland Toën tells us the goal is to get rid of the things of the left column.

6. Representation Schemes

Let A and B be algebras over k. Let us take a basis (ej)j of B, and denote the structure

constant by cjkl, so that ekel =
∑

j c
j
klej holds. Then O(Rep(A,B)) is the commutative k-algebra

with

generators: ρj(a) for a ∈ A and j (linear in a),

relations: ρj(a1a2) =
∑
cjklρ

k(a1)ρl(a2).

We also have the derived version O(LRep(A,B)) given by the differential graded algebra

O(Rep(Ã, B)) for Ã a cofibrant replacement of A and dρj(a) := ρj(∂Ãa).
The intuition comes from the case where B = Mn(k) (or a limit of such) [KR00]. In this case

GLn acts on Rep(A,B). We denote

Ω•Rep(A) := Ω•O(Rep(A,B))/k, Ω•GLn
(Repn(A)) = Hom(Sym∗ gln,Ω

•
Rep(A))

GLn .

Then one has a natural linear map [GS12b]

CCper
• (A,A) −→ Ω•GLn

(Repn(A)),

which is a motivation behind the i∆ differential of [GS12b]. This gives a Kähler style equivariant
de Rham complex of the scheme Repn(A) related to HCper

• etc. It is still unknown how to get

H•sing(EGLn ×GLn
Repn(A))

over C.
Consider again the general B (not necessarily a matrix ring). If one uses Ã = Cobar(Bar(A)),

O (LRep(A,B)) = C•CE (Conv(Bar(A), B))

where Conv denotes the convolution differential graded Lie algebra. For B = Mn(k), Berest
et.al. [BFP+14] showed that

H• (O (LRepn(A))) ' H•CE (gln(Bar(A))) .

Now, C•CE(gln(Bar(A))) gives rise to Sym(CC•(Bar(A))) by letting n → ∞, which is “equal” to
CC•(A).
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For commutative A the “classic” understanding is A = O(X) for X = SpecA and we study the
geometric/topological invariants of X in terms of A, e.g.,

H•sing(X) =

{
H•(Ω•A/k, ddR) if A is smooth,

HCper
• (A) in general [Rin63,FT85].

For an non-commutative algebra A we have two approaches:

RepA
--

A

33

++
H•sing (Repn(A) �GLn) ,

HCper
• (A)“ = ”H•sing(X)

22

where RepA and X should be understood as some hypothetical spaces which are spectra of the
non-commutative algebra A, and “�” stands for the homotopy quotient.

Points of LRep(A,B) are given by morphisms Spec k → LRep(A,B), or rather homomor-
phisms O(LRep(A,B)) → k which correspond to the A∞-morphisms f : A → B. Now we have
the dictionary

{A∞-morphismsf : A→ B} = {objects of the dg category C•(A,B)} .

We could hope for a “derived scheme” Mor(A,B) (a sort of morphism space with object space
LRep(A,B)) with composition structure in DGA terms.

7. More operations

When A is an en-algebra, because of En ' E1 ⊗ . . . ⊗ E1 (cf. [Lur14, Section 5.1.2]), roughly
speaking A has n associative structures. If we take C• or CC−• with respect to one of them,
the result should have an en−1-algebra structure. The motivation here comes from the fact that
C• = C•(A,A) is a brace algebra, and CC−• (C•) is an A∞-algebra.

One candidate is the following: if A is an en-algebra, C•(A) becomes an en−1-algebra by

(a0⊗ . . .⊗an) ·(b0⊗ . . .⊗bm) = (a0b0⊗
∑
j,k

sh(a0, . . . , aj , b1, . . . , bk−1)⊗{aj , bk}⊗sh(remaining)

+
1

2
({a0, b1}b0 ⊗ sh(a1, . . . , b2, . . .) + {bn, a0}b0 ⊗ sh(a1, . . . , bn−1)) + (a↔ b).

jeg begriper inte det här! (Fröken Bock, Karlsson p̊a taket)

References

[BFP+14] Y. Berest, G. Felder, S. Patotski, A. C. Ramadoss, and T. Willwacher, Representation homology,
Lie algebra cohomology and derived Harish-Chandra homomorphism. preprint (2014), available at

arXiv:1410.0043 [math.RT].

[Con83] A. Connes, Cohomologie cyclique et foncteurs Extn, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983),
no. 23, 953–958. MR777584 (86d:18007)

[Con85] A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985),
257–360. MR823176 (87i:58162)

[Dri04] V. Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643–691,
DOI:10.1016/j.jalgebra.2003.05.001. MR2028075 (2006e:18018)
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