ORBIT EQUIVALENCE AND OPERATOR ALGEBRAS

NARUTAKA OZAWA

Abstract

This treatise is based on the lecture given by Narutaka Ozawa at the University of Tokyo during the winter semester 2006-2007. It includes an elementary theory of orbit equivalence via type II_{1} von Neumann algebras, Lück's dimension theory [6] and its application to L^{2} Betti numbers [5], convergence of the semigroup associated to a derivation and a theorem of Popa on embeddability of subalgebras.

Contents

1. Introduction 1
1.1. Orbit equivalence 1
1.2. Preliminaries on von Neumann algebras 3
1.3. Crossed products 4
1.4. von Neumann algebras of orbit equivalence 4
2. Elementary theory of orbit equivalence 5
2.1. Essentially free action of countable discrete groups 5
2.2. Inclusion of von Neumann algebras 6
2.3. Theorem of Connes-Feldman-Weiss 9
3. L^{2}-Betti numbers 12
3.1. Introduction 12
3.2. Operators affiliated to a finite von Neumann algebra 14
3.3. Projective modules over a finite von Neumann algebra 15
3.4. Application to orbit equivalence 18
4. Derivations on von Neumann algebras 21
4.1. Densely defined derivations 21
4.2. Semigroup associated to a derivation 24
Appendix A. Embeddability of subalgebras 29
References 31

1. Introduction

1.1. Orbit equivalence.

Definition 1.1. Let Y be a topological space, B_{Y} the σ-algebra of the Borel sets of Y. When Y is a separable complete metric space, $\left(Y, B_{Y}\right)$ (or, by abuse of language, $Y)$ is said to be a standard Borel space (standard σ-algebra).
Remark 1.2. When X is a standard Borel space, X is either (at most) countable or isomorphic to the closed interval $[0,1]$.

[^0]Definition 1.3. A standard Borel space with a Borel probability measure is said to be a (standard) probability space. A point x of a probability space (X, μ) is said to be an atom of (X, μ) when $\mu(x)>0$. A probability space (X, μ) is said to be diffuse when it has no atom.

Example 1.4. (Examples of standard probability spaces)
(1) The infinite product $\left(\prod_{n \in \mathbb{N}}\{0,1\}, \otimes_{n} \mu_{n}\right)$, where μ_{n} is a probability measure on $\{0,1\}$ for each $n \in \mathbb{N}$ is standard.
(2) When G is a separable compact group, the normalized Haar measure on G makes G into a standard probability space.
When (X, μ) is a probability space, we obtain a ($\left.\mathrm{w}^{*}-\right)$ separable von Neumann algebra $L^{\infty} X$ and a normal state (also denoted by μ) on it. To each isomorphism $\phi:(X, \mu) \rightarrow(Y, \nu)$ of probability spaces, we obtain an isomorphism $\phi_{*}: L^{\infty} Y \rightarrow$ $L^{\infty} X, f \mapsto f \circ \phi$ satisfying $\mu \circ \phi^{*}=\nu$.

Theorem 1.5. (von Neumann)
(1) When (X, μ) and (Y, ν) are diffuse probability spaces, there is an isomorphism $\left(L^{\infty}(X, \mu), \mu\right) \simeq\left(L^{\infty}(Y, \nu), \nu\right)$.
(2) For each isomorphism $\sigma: L^{\infty} Y \rightarrow L^{\infty} X$ with $\mu \sigma=\nu$, there exists a Borel isomorphism $\phi: X \rightarrow Y$ such that $\phi^{*} \mu=\nu$ and $\phi_{*}=\sigma$.

Proof. (Outline): (1) We may assume that $Y=\prod_{\mathbb{N}}\{0,1\}, \mu=\otimes_{\mathbb{N}}\left(\frac{1}{2}, \frac{1}{2}\right)$. Since X is diffuse, we have a decomposition $X=X_{0} \coprod X_{1}$ by Borel sets with $\mu\left(X_{0}\right)=\frac{1}{2}$. We can continue this procedure as $X_{0}=X_{00} \coprod X_{01}, \mu\left(X_{00}\right)=\frac{1}{4}$, so on. The partition by $X_{* * \ldots}$. can be made fine enough because there is a separating family $\left(B_{n}\right)_{n \in \mathbb{N}}$ in B_{X}, which will imply the desired isomorphism between $L^{\infty} X$ and $L^{\infty} Y$ compatible with the normal states.
(2) Let λ denote the Lebesgue measure on the closed interveal $[0,1]$. Since there exists an isomorphism $\left(L^{\infty} Y, \nu\right) \simeq\left(L^{\infty}[0,1], \lambda\right)$, we may assume that $Y=[0,1]$ and $\nu=\lambda$ here. For each $r \in \mathbb{Q} \cap[0,1]$, put $E_{r}=\sigma\left(\chi_{[0, r)}\right)$. Define a mapping $\phi: X \rightarrow[0,1]$ by $\phi(x)=\inf \left\{r: x \in E_{r}\right\}$. The inverse image of $[0, t)$ under ϕ is equal to $\cup_{r<t} E_{r}$. The latter is obviously Borel, which means that ϕ is a Borel map. By $\sigma\left(\chi_{[0, r)}\right)=\phi^{*}\left(\chi_{[0, r)}\right)$ for $r \in \mathbb{Q} \cap[0,1]$, we have $\sigma=\phi^{*}$ and $\phi_{*} \mu=$ Lebesgue measure.

It remains to replace ϕ by a Borel isomorphism. Let $\left(B_{n}\right)_{n \in \mathbb{N}}$ be a separating family of X. For each n, there exists $F_{n} \in B_{Y}$ such that $\phi_{*} \chi_{F_{n}}=\chi_{B_{n}}$. Thus $N=\cup_{n} B_{n} \triangle \phi^{-1} F_{n}$ is a null set. On $X \backslash N$, the condition $x \in B_{n}$ is equivalent to $\phi(x) \in F_{n}$. If x and y are distinct points of $X \backslash N$, there exists an integer n such that $x \in B_{n}$ while $y \notin B_{n}$. Thus $\phi(x) \neq \phi(y)$ and ϕ is injective on $X \backslash N$. We may assume that N and $Y \backslash \phi(X \backslash N)$ are uncountable so that there is an isomorphism of N to $Y \backslash \phi(X \backslash N)$.

Let $\Gamma \curvearrowright(X, \mu)$ be a measure preserving action by a discrete countable group. (We may assume that it acts by Borel isomorphisms.) Let s be an element of Γ. When f is a complex Borel function defined on X, put $\alpha_{s}(f): x \mapsto f\left(s^{-1} x\right)$. This induces a μ-preserving $*$-automorphism on $L^{\infty} X$. This way we obtain an action $\alpha: \Gamma \curvearrowright L^{\infty}(X, \mu)$ preserving the state μ.

Definition 1.6. Two actions $\Gamma \curvearrowright(X, \mu)$ and $\Gamma \curvearrowright(Y, \nu)$ are said to be conjugate when there exists an probability space isomorphism $\phi:(X, \mu) \rightarrow(Y, \nu)$ witch is a.e.
Γ-equivariant. This is equivalent to the existence of a Γ-equivariant state preserving isomorphism $\sigma: L^{\infty}(Y, \nu) \rightarrow L^{\infty}(X, \mu)$.

Definition 1.7. Let $\Gamma \curvearrowright(X, \mu)$ be an action by measure preserving Borel isomorphisms. The subset $\mathscr{R}_{\Gamma \curvearrowright(X, \mu)}=\{(s x, x): s \in \Gamma\}$ of $X \times X$ is called the orbit equivalence relation of the action.

Definition 1.8. Two actions $\Gamma \curvearrowright(X, \mu)$ and $\Lambda \curvearrowright(Y, \nu)$ are said to be orbit equivalent when there exists a measure preserving Borel isomorphism $\phi: Y \rightarrow X$ satisfying $\Gamma \phi(y)=\phi(\Lambda y)$ for a.e. $y \in Y$.

Definition 1.9. A partial Borel isomorphism on X is a triple (ϕ, A, B) consisting of $A, B \in B_{X}$ and a Borel isomorphism ϕ of A onto B.

Definition 1.10. A measure preserving standard orbit equivalence is a subset \mathscr{R} of $X \times X$ satisfying the following conditions:
(1) \mathscr{R} is a Borel subset with respect to the product space structure.
(2) \mathscr{R} is an equivalence relation on X.
(3) For each $x \in X$, the \mathscr{R}-equivalence class of x is at most countable.
(4) Any partial Borel isomorphism ϕ whose graph is contained in \mathscr{R}, ϕ preserves measure.

Theorem 1.11. (Lusin) Let X, Y be standard spaces.
(1) When $\phi: X \rightarrow Y$ is a countable-to-one Borel map, $\phi(X)$ is Borel. Moreover there exists a Borel partition $X=\coprod X_{n}$ such that $\left.\phi\right|_{X_{n}}$ is a Borel isomorphism onto $\phi\left(X_{n}\right)$.
(2) When \mathscr{R} is a standard orbit equivalence, $\mathscr{R}=\cup_{n} \mathscr{G}\left(\phi_{n}\right)$ where ϕ_{n} is a partial Borel isomorphism for each n.

Lemma 1.12. Let A be a subset of a standard space X, ϕ a mapping of A into X. ϕ and A are Borel if and only if the graph $\mathscr{G}(\phi)=\{(\phi x, x): x \in A\}$ of ϕ is Borel in $X \times X$.

Proof. \Leftarrow is an immediate consequence of Theorem 1.11 .
\Rightarrow : Let $\left(B_{n}\right)_{n \in \mathbb{N}}$ be a separating family of X. The condition $y \neq \phi(x)$ is equivalent to $(y, x) \in \cup_{n}\left(\complement B_{n}\right) \times \phi^{-1}\left(B_{n}\right)$. Thus $\mathscr{G}(\phi)=\complement\left(\cup\left(\complement B_{n}\right) \times \phi^{-1}\left(B_{n}\right)\right)$.
1.2. Preliminaries on von Neumann algebras. Let H be a Hilbert space, $B(H)$ the involutive Banach algebra of the continuous endomorphisms of H, A a $*$-subalgebra of $B(H)$. (typically A generates a von Neumann algebra M of our interest.) In the following A is often assumed to admit a cyclic tracial vector $\xi_{\tau} \in H$, i.e. $\left\|\xi_{\tau}\right\|=1, A \xi_{\tau}$ is dense in H, and that the vector state $\tau(a)=\left\langle a \xi_{\tau}, \xi_{\tau}\right\rangle$ is tracial.

Remark 1.13. A state τ is tracial means that by definition the two sesquilinear forms $\tau\left(a b^{*}\right)$ and $\tau\left(b^{*} a\right)$ in (a, b) are same. To check this property, by polarization it is enough to show $\tau\left(a a^{*}\right)=\tau\left(a^{*} a\right)$. Under the assumption above ξ_{τ} becomes a separating vector for $A^{\prime \prime}$. Indeed, $a \xi_{\tau}=0$ implies $\tau\left(b c^{*} a\right)=0$ for $b, c \in A$, which means $\tau\left(c^{*} a b\right)=0$ and in turn $\langle a H, H\rangle=0$.

Notation. Let \hat{a} denote $a \xi_{\tau}$. (Hence we have $\langle\hat{a}, \hat{b}\rangle=\tau\left(a b^{*}\right)$.)

Remark 1.14. We have a conjugate linear map $J: H \rightarrow H$ determined by $\hat{a} \mapsto \widehat{a^{*}}$. Then we have $J a J \hat{b}=\widehat{b a^{*}}$ which implies $J A J \subset A^{\prime}$ and $J A^{\prime \prime} J \subset A^{\prime}$. On the other hand, for any $x \in A^{\prime}$ and $a \in A$

$$
\left\langle J x \xi_{\tau}, a \xi_{\tau}\right\rangle=\left\langle J a \xi_{\tau}, x \xi_{\tau}\right\rangle=\left\langle a^{*} \xi_{\tau}, x \xi_{\tau}\right\rangle=\left\langle x^{*} \xi_{\tau}, a \xi_{\tau}\right\rangle
$$

Thus $J x \xi_{\tau}=x^{*} \xi_{\tau}$, thence ξ_{τ} is a cyclic tracial vector for A^{\prime}. The J-operator for $\left(A^{\prime}, \xi_{\tau}\right)$ is exactly equal to the original J. Doing the same argument as above, we obtain $J A^{\prime} J \subset A^{\prime \prime}$.

Remark 1.15. The map $A^{\prime \prime} \rightarrow A^{\prime}, a \mapsto J a J$ is a conjugate linear $*$-algebra isomorphism.
1.3. Crossed products. Let $\Gamma \curvearrowright(X, \mu)$ be a measure preserving action of a discrete group on a standard probability space X. Recall that we have an action $\Gamma \curvearrowright L^{\infty} X$ induced by $\alpha_{s}(f)=f\left(s^{-1}-\right)$ for $s \in \Gamma$.

On the other hand, we get a unitary representation $\pi: \Gamma \curvearrowright L^{2}(X, \mu)$ given by the same formula $\pi_{s} f=\alpha_{s} f$ as the one on $L^{\infty} X$. Note that $\pi_{s} f \pi_{s}^{*}=\alpha_{s}(f)$ for $s \in \Gamma$ and $f \in L^{\infty} X$.

Definition 1.16. Let $\lambda: \Gamma \curvearrowright B\left(\ell_{2} \Gamma\right)$ denote the regular representation. The von Neumann algebra $L^{\infty} X \rtimes \Gamma$ on $L^{2}(X) \otimes \ell_{2} \Gamma$ is generated by the operators $\pi \otimes \lambda(s)$ for $s \in \Gamma$ and $f \otimes 1$ for $f \in L^{\infty} X$ is called the crossed product of $L^{\infty} X$ by α.

Let A denote $\left\{\sum_{\text {finite }} f_{s} \otimes 1 \cdot \pi \otimes \lambda(s)\right\} \subset L^{\infty} X \rtimes \Gamma$. By abuse of notation, in the following f stands for $f \otimes 1$ and $\lambda(s)$ for $\pi \otimes \lambda(s)$. Now $\xi_{\tau}=\mathbf{1} \otimes \delta_{e} \in L^{2} X \otimes \ell_{2} \Gamma$ is a cyclic tracial vector for A. Indeed, it is obviously cyclic, while $\tau(f \lambda(s))=\delta_{e, s} \mu(f)$ implies the tracial property:

$$
\tau(f \lambda(s) g \lambda(t))=\delta_{s t, e} f \alpha_{s}(g)=\delta_{t s, e} \alpha_{t}(f) g=\tau(g \lambda(t) f \lambda(s))
$$

Note that the above expressions are nonzero only if $s=t^{-1}$.
Let V denote the isometry $L^{2}(X) \rightarrow L^{2}(X) \otimes \ell_{2} \Gamma, f \mapsto f \otimes \delta_{e}$. Then the contraction $E: L^{\infty} X \rtimes \Gamma \rightarrow B\left(L^{2}(X)\right), a \mapsto V^{*} a V$ has image $L^{\infty} X$, i.e. E is a conditional expectation (see Definition 2.6) of $L^{\infty} X \rtimes \Gamma$ onto $L^{\infty} X$. Note that $\tau=\mu \circ E$.
1.4. von Neumann algebras of orbit equivalence. Let \mathscr{R} be a standard orbit equivalence on X. Hence it is a countable disjoint union $\coprod_{n} \mathscr{G}\left(\phi_{n}\right)$ of the graphs of partial isometries. We may assume that $\phi_{0}=\operatorname{Id}_{X}$. We will define a "Borel probability measure" on \mathscr{R}.

Observe that when $f: \mathscr{R} \rightarrow \mathbb{C}$ is a Borel function, $X \rightarrow \mathbb{C}, x \mapsto \sum_{y} f(y, x)=$ $\sum_{n} f\left(\phi_{n} x, x\right)$ is also Borel. Define a measure ν on \mathscr{R} by putting

$$
\int_{\mathscr{R}} \xi d \nu=\int_{X} \sum_{y \mathscr{R} x} \xi(y, x) d \mu(x)
$$

for each Borel function ξ on \mathscr{R}. Thus when B is a Borel subset of $\mathscr{R}, \nu(B)=$ $\int\left|\pi_{r}^{-1}(x) \cap B\right| d \mu(x)$ for the second projection $\pi_{r}: \mathscr{R} \rightarrow X,(y, x) \mapsto x$.

We get a pseudogroup $\llbracket \mathscr{R} \rrbracket$ whose underlying set is

$$
\{\phi: \text { partial Borel isomorphism, } \mathscr{G}(\phi) \subset \mathscr{R}\}
$$

The composition $\phi \circ \psi$ of ϕ and ψ is defined as the composition of the maps on $\psi^{-1} \operatorname{dom}(\phi)$. In particular, the identity maps of the Borel sets are the units of $\llbracket \mathscr{R} \rrbracket$, and $\phi \in \llbracket \mathscr{R} \rrbracket$ implies $\phi^{-1} \in \llbracket \mathscr{R} \rrbracket$.

For each $\phi \in \llbracket \mathscr{R} \rrbracket$, define a partial isometry $v_{\phi} \in B\left(L^{2}(\mathscr{R}, \nu)\right)$ by $v_{\phi} \xi(y, x)=$ $\xi\left(\phi^{-1} y, x\right)$. Thus $v_{\phi} v_{\psi}=v_{\phi \circ \psi}$. On the other hand, the set $\left\{\chi_{\mathscr{G}(\phi)}: \phi \in \llbracket \mathscr{R} \rrbracket\right\}$ is total in $L^{2}(\mathscr{R}, \nu)$ and $v_{\phi} \chi_{\mathscr{G} \psi}=\chi_{\mathscr{G} \phi \circ \psi}$. Moreover, we have

$$
\left\langle v_{\phi} \chi_{\mathscr{G} \psi}, \chi_{\mathscr{G} \theta}\right\rangle=\int \mathscr{G}(\phi \psi) \cap \mathscr{G}(\theta) d \nu=\mu\{x: \phi \psi x=\theta x\}=\left\langle\chi_{\mathscr{G} \psi}, v_{\phi^{-1}} \chi_{\mathscr{G} \theta}\right\rangle,
$$

which implies $v_{\phi}^{*}=v_{\phi^{-1}}$.
Definition 1.17. The von Neumann algebra $\mathrm{vN} \mathscr{R}$ on $L^{2}(\mathscr{R}, \nu)$ generated by $\left\{v_{\phi}: \phi \in \llbracket \mathscr{R} \rrbracket\right\}$ is called the von Neumann algebra of \mathscr{R}.
$\xi_{\tau}=\chi_{\mathscr{G}\left(\mathrm{Id}_{X}\right)}$ is a cyclic tracial vector for $\mathrm{v} \mathrm{N} \mathscr{R}$: in fact,

$$
\begin{aligned}
\tau\left(v_{\phi \psi}\right) & =\mu(\{x: \phi \circ \psi(x)=x\}) \\
& =\mu(\{y: \psi \phi y=y\}) \quad\left(y=\phi^{-1} x\right) \\
& =\tau\left(v_{\psi \phi}\right)
\end{aligned}
$$

Note that $L^{\infty} X$ is contained "in the diagonal" of $v N \mathscr{R}$, subject to the relation $v_{\phi} f=\left(f \circ \phi^{-1}\right) v_{\phi}$. We have a conditional expectation $E: \vee \mathrm{N} \mathscr{R} \rightarrow L^{\infty} X, a \mapsto V^{*} a V$ implemented by the "diagonal inclusion" isometry $V: L^{2} X \rightarrow L^{2} \mathscr{R}$. We have $E\left(v_{\phi}\right)=\chi_{\{x: \phi x=x\}}$.

2. Elementary theory of orbit equivalence

2.1. Essentially free action of countable discrete groups. Suppose we are given a measure preserving action $\Gamma \curvearrowright(X, \mu)$ by a discrete group on a standard probability space. As in the last section we get two inclusions of von Neumann algebras:
(1) $L^{\infty} X \subset L^{\infty} X \rtimes \Gamma$ in $B\left(L^{2} X \otimes \ell_{2} \Gamma\right)$.
(2) $L^{\infty} X \subset \vee \mathrm{~N}\left(\mathscr{R}_{\Gamma \curvearrowright(X, \mu)}\right)$ in $B\left(L^{2} \mathscr{R}\right)$.

In general these are different, e.g. when the action is trivial.
Definition 2.1. An action $\Gamma \curvearrowright(X, \mu)$ is said to be essentially free when the fixed point set of s has measure 0 for any $s \in G \backslash\{e\}$.

Theorem 2.2. When the action $\Gamma \curvearrowright(X, \mu)$ is essentially free, the above two inclusions of von Neumann algebras are equal.

Remark 2.3. $J \hat{v_{\phi}}=\hat{v_{\phi^{-1}}}$ implies $J \xi(x, y)=\overline{\xi(y, x)}$.

Proof of the theorem. Identification of the representation Hilbert spaces is given by $U: L^{2} X \otimes \ell_{2} \Gamma \rightarrow L^{2} \mathscr{R}, g \otimes \delta_{t} \mapsto g \cdot \chi_{\mathscr{G}(t)}$. When we have an equality $f \chi_{\mathscr{G}(s)}=g \chi_{\mathscr{G}(t)}$ of nonzero vectors in $L^{2} \mathscr{R}, s$ must be equal to t by the essential freeness assumption. Now,

$$
U^{*} v_{s} U\left(g \otimes \delta_{t}\right)=U^{*} \alpha_{s}(g) v_{s} \chi_{\mathscr{G}(t)}=U^{*} \alpha_{s}(g) \chi_{\mathscr{G}(s t)}=\alpha_{s}(g) \otimes \delta_{s t}
$$

This shows $U^{*} v_{s} U=\pi \otimes \lambda(s)$. On the other hand, $U^{*} f U=f \otimes 1$ is trivial. Thus, via $U, L^{2} X \rtimes \Gamma$ is identified to $L^{2} \mathscr{R}$.

Definition 2.4. Let M be a finite von Neumann algebra, A a von Neumann subalgebra (in the following A is often assumed to be commutative). The subset $\mathcal{N} A=\left\{u \in \mathcal{U} M: u A u^{*}=A\right\}$ of $\mathcal{U} M$ is called the normalizer of A. Likewise $\mathcal{N}^{p} A=\left\{v \in M:\right.$ partial isometry, $\left.v^{*} v, v v^{*} \in A, v A v^{*}=A v v^{*}\right\}$ is called the partial normalizer of A.

Lemma 2.5. For any $v \in \mathcal{N}^{p} A$, there exist $u \in \mathcal{N} A$ and $e \in \operatorname{Proj}(A)$ such that $v=$ ue. For any $\phi \in \llbracket \mathscr{R} \rrbracket$, there exists a Borel isomorphism $\tilde{\phi}$ whose graph is contained in \mathscr{R} and $\left.\tilde{\phi}\right|_{\operatorname{dom} \phi}=\phi$.

Proof. We prove the second assertion as the demonstration of the first one is an algebraic translation of it. Put $E=\operatorname{dom} \phi$ and $F=\operatorname{ran} \phi$. When $\mu(E \triangle F)=0$, there is nothing to do. When $\mu(E \triangle F) \neq 0, \exists k>0$ such that $\phi^{k}(E \backslash F) \cap(F \backslash E)$ is non-null. If not, $\phi^{k}(E \backslash F) \subset F \cap \complement(F \backslash E)=F \cap E \subset E$ up to a null set and ϕ^{k+1} can be defined a.e. on $E \backslash F$. Thus we would get a sequence $\left(\phi^{k}(E \backslash F)\right)_{k \in \mathbb{N}}$ of subsets with nonzero measure. For any pair $m<n, \phi^{m}(E \backslash F) \cap \phi^{n}(E \backslash F)$ is equal to $\phi^{m}\left(\phi^{n-m}(E \backslash F) \cap(E \backslash F)\right)$ which is null. This contradicts to $\mu(X)=1$.

Now, given such k, put $\phi_{1}=\phi \coprod\left(\left.\phi^{-k}\right|_{\phi^{k}(E \backslash F) \cap(F \backslash E)}\right)$. Then we can use the maximality argument (Zorn's lemma) to obtain a globally defined Borel isomorphism.

2.2. Inclusion of von Neumann algebras.

Definition 2.6. Let $M \subset N$ be an inclusion of von Neumann algebras. A unital completely positive map $E: N \rightarrow M$ is said to be a conditional expectation when it satisfies $E(a x b)=a E(x) b$ for $a, b \in M$ and $x \in N$.

Fact. When N is finite with a faithful tracial state τ, there exists a unique conditional expectation E that preserves τ. Then we obtain an orthogonal projection $e_{M}: L^{2} N \rightarrow \overline{M \xi_{\tau}} \simeq L^{2} M$ extending E.

Remark 2.7. (Martingale) If we are given $N_{1} \subset N_{2} \subset \cdots \subset M$ with $N=\vee_{i} N_{i}$ or $M \supset N_{1} \supset N_{2} \supset \cdots$ with $N=\cap_{i} N_{i}$, together with conditional expectations $E_{n}: M \rightarrow N_{n}$ and $E: M \rightarrow N, e_{n} \rightarrow e$ in the strong operator topology implies $\left\|E(x)-E_{n}(x)\right\|_{2} \rightarrow 0$.

For example, let $A \subset M$ be a finite dimensional commutative subalgebra, e_{i} $(1 \leq i \leq n)$ the minimal projections of A. Then $E_{A^{\prime} \cap M}(x)=\sum_{i=1}^{n} e_{i} x e_{i}$. If we have a sequence $A_{1} \subset A_{2} \subset \cdots \subset M$ of finite dimensional commutative subalgebras and $A=\vee A_{i}$, we have $E_{A_{n}^{\prime} \cap M} \rightarrow E_{A^{\prime} \cap M}$. The latter is equal to E_{A} if and only if A is a maximal abelian subalgebra.

Definition 2.8. A von Neumann subalgebra $A \subset M$ is said to be a Cartan subalgebra of M when it is a maximal abelian subalgebra in M and $\mathcal{N}(A)^{\prime \prime}=M$. (Then we also have $M=\mathcal{N}^{p}(A)^{\prime \prime}$.)

Theorem 2.9. $L^{\infty} X \subset \mathrm{vN} \mathscr{R}$ is a Cartan subalgebra.

Proof. Since the generators v_{ϕ} are in $\mathcal{N} A$, it is enough to show that $L^{\infty} X$ is maximal abelian in $\mathrm{vN} \mathscr{R}$. Recall that $\mathscr{R}=\coprod \mathscr{G}\left(\phi_{n}\right)$ with $\phi_{0}=\operatorname{Id}_{X}$. Then let a be an
element of the relative commutant of $L^{\infty} X . \hat{a}$ can be written as $\sum_{n} f_{n} \chi_{\mathscr{G}\left(\phi_{n}\right)}$. By assumption $f a=a f$ for any $f \in L^{\infty} X$. Thus,

$$
\widehat{f a}=\sum f f_{n} \chi_{\mathscr{G}\left(\phi_{n}\right)}, \quad \widehat{a f}=J \bar{f} J \hat{a}=\sum f \circ \phi_{n}^{-1} \cdot f_{n} \chi_{\mathscr{G}\left(\phi_{n}\right)} .
$$

Hence $f f_{n}=f \circ \phi_{n} f_{n}$ for any n and any f, which implies $f_{n}=0$ except for $n=0$.

Definition 2.10. \mathscr{R} is said to be ergodic when any \mathscr{R}-invariant Borel subset of X is of measure either 0 or 1 . An action $\Gamma \curvearrowright(X, \mu)$ is said to be ergodic when $\mathscr{R}_{\Gamma \curvearrowright X}$ is ergodic.

Corollary 2.11. $\mathrm{vN} \mathscr{R}$ is a factor if and only if \mathscr{R} is ergodic.
Proof. The Cartan subalgebra $L^{\infty} X$ contains the center of $v N \mathscr{R}$. The central projections are the characteristic functions of the \mathscr{R}-invariant Borel subsets.

Let $v \in \mathcal{N}^{p} L^{\infty}, E, F \in B_{X}$ the Borel sets (up to null sets) respectively representing the projections $v^{*} v$ and $v v^{*}$ in A. The map $L^{\infty} E \rightarrow L^{\infty} F, f \mapsto v f v^{*}$ e is a $*$-isomorphism. Thus there exists a Borel isomorphism $\phi_{v}: E \rightarrow F$ such that $v f v^{*}=f \circ \phi_{v}^{-1} .\left(v=\sigma v_{\phi_{v}}\right.$ for some $\left.\sigma \in \mathcal{U} L^{\infty} F.\right)$

Theorem 2.12. In the notation as above, $v \xi v^{*}=\xi\left(\phi_{v}^{-1}(y), x\right) \nu$-a.e. for any $v \in \mathcal{N}^{p} L^{\infty}$ and any $\xi \in L^{\infty} \mathscr{R}$. In particular, $\phi_{v} \in \llbracket \mathscr{R} \rrbracket$ up to a null set. Moreover, we have $L^{\infty} \vee J L^{\infty} J=L^{\infty} \mathscr{R}$.

Proof. Put $A=L^{\infty} X$. First, $f J g J \in L^{\infty}$ for $f, g \in A$: indeed, $f J g J$ is the multiplication by the function $f(y) \overline{g(x)}$ on \mathscr{R}.

$$
v f J g J v^{*}=v f v^{*} J g J=f \circ \phi_{v}^{-1} J g J \quad\left(J M J=M^{\prime}\right)
$$

Hence $v \xi v^{*}(y, x)=v\left(\phi_{v}^{-1} y, x\right)$ for $\xi \in A \vee J A J$. It remains to show $\chi_{\mathscr{G}\left(\operatorname{Id}_{X}\right)} \in$ $A \vee J A J$. Because, if this is satisfied, we will have $\chi_{\mathscr{G}_{(}\left(\phi_{v}\right)}=v \chi_{\mathscr{G}(\mathrm{Id})} v^{*} \in L^{\infty} \mathscr{R}$.

Take an increasing sequence $A_{1} \subset A_{2} \subset \cdots$ of finite dimensional algebras with $A=\vee A_{k}$. The conditional expectation $E_{n}: \vee \mathrm{N} \mathscr{R} \rightarrow A_{n}$ is equal to $\sum_{k} e_{k}^{(n)} J e_{k}^{(n)} J$ (as an operator on $L^{2} \mathscr{R}$) for the minimal projections $\left(e_{k}^{(n)}\right)_{k}$ of A_{n}. Now, $\left(E_{n}\right)_{n}$ converges to the conditional expectation E_{A} onto A which is equal to the multiplication by $\chi_{\mathscr{G}\left(\mathrm{Id}_{X}\right)}$ in the strong operator topology. Hence $\chi_{\mathscr{G}(\mathrm{Id})} \in A \vee J A J$.

Remark 2.13. (2-cocycle [4) Suppose we are given a map $\sigma_{\phi, \psi}: \operatorname{ran}(\phi \psi) \rightarrow \mathbb{T}$ for each pair $\phi, \psi \in \llbracket \mathscr{R} \rrbracket$, satisfying $\sigma_{\phi, \psi} \sigma_{\phi \psi, \theta}=\left(\sigma_{\psi, \theta} \circ \phi^{-1}\right) \sigma_{\phi, \psi \theta}$. Then $v_{\phi}^{\sigma} v_{\psi}^{\sigma}=$ $\sigma_{\phi, \psi} v_{\phi \psi}^{\sigma}$ determines an associative product on $\mathbb{C} \llbracket \mathscr{R} \rrbracket$ with a trace τ. The GNS representation gives an inclusion $L^{\infty} X \subset \mathrm{vN}(\mathscr{R}, \sigma) \subset B\left(L^{2} \mathscr{R}\right)$ of von Neumann algebras.

Fact. Any Cartan subalgebra of $\mathrm{vN}(\mathscr{R}, \sigma)$ is isomorphic to $L^{\infty} X$.
Theorem 2.14. Let \mathscr{R} (resp. \mathscr{S}) be an orbit equivalence on X (resp. Y), $F: X \rightarrow$ Y a measure preserving Borel isomorphism. The induced isomorphism $F_{*}: L^{\infty} X \rightarrow$ $L^{\infty} Y$ can be extended to a normal *-homomorphism $\mathrm{vN} \mathscr{R} \rightarrow \mathrm{vN} \mathscr{S}$ if and only if $F \mathscr{R} \subset \mathscr{S}$ up to a ν-null set.

Proof. For simplicity we identify Y with X by means of F. If $\llbracket \mathscr{R} \rrbracket \subset \llbracket \mathscr{S} \rrbracket$, the required homomorphism is induced by the isometry $L^{2} \mathscr{R} \rightarrow L^{2} \mathscr{S}$. Conversely, if $\pi: \mathrm{v} \mathrm{N} \mathscr{R} \rightarrow \mathrm{vN} \mathscr{S}$ is an extension of F_{*}, for any $\phi \in \llbracket \mathscr{R} \rrbracket$ we have

$$
\pi\left(v_{\phi}\right) \pi(f) \pi\left(v_{\phi}\right)^{*}=\pi\left(f \circ \phi^{-1}\right)=f \circ \phi^{-1}
$$

which implies $\pi\left(v_{\phi}\right)=\sigma_{\phi} v_{\phi}$ for some $\sigma_{\phi} \in L^{\infty} X$.
Let M be a finite von Neumann algebra with trace τ, identified to a subalgebra of $B\left(L^{2} M\right)$. Suppose A is a von Neumann subalgebra of M. Let e_{A} be the projection onto the span of $A \xi_{\tau}$ and put $\langle M, A\rangle=\left(M \cup\left\{e_{A}\right\}\right)^{\prime \prime}$.

For any $x \in M$ and $\hat{a} \in L^{2} A$,

$$
e_{A} x \hat{a}=e_{A} \widehat{x a}=\widehat{E_{A}(x a)}=\widehat{E_{A}(x) a}
$$

which implies $e_{A} x e_{A}=E_{A}(x) e_{A}$. In particular, we have

$$
\langle M, A\rangle=\overline{\left\{\sum x_{j} e_{A} y_{j}+z: x_{j}, y_{j}, z \in M\right\}^{\mathrm{wop}} .}
$$

Now,

$$
e_{A} J x J e_{A} \hat{a}=e_{A} \widehat{a x^{*}}=\widehat{E_{A}\left(a x^{*}\right)}=a \widehat{E_{A}\left(x^{*}\right)}=J E_{A}(x) J \hat{a}
$$

implies $\langle M, A\rangle^{\prime}=M^{\prime} \cap\left\{e_{A}\right\}^{\prime}=J A J$, consequently $\langle M, A\rangle=(J A J)^{\prime}$. Note that when A is commutative $e_{A} J a J=a^{*} e_{A}$ for $a \in A$.

We have the "canonical trace" Tr on $\langle M, A\rangle$ which is a priori unbounded defined by $\sum_{i} x_{i} e_{A} y_{i} \mapsto \tau\left(\sum_{i} x_{i} y_{i}\right)$. Still, $T r$ is normal semifinite, and its tracial property is verified as follows:

$$
\begin{aligned}
\left\|\sum x_{i} e_{A} y_{i}\right\|_{2, \operatorname{Tr}}^{2} & =\operatorname{Tr}\left(\sum y_{i}^{*} e_{A} x_{i}^{*} x_{j} e_{A} y_{j}\right)=\sum \tau\left(y_{i}^{*} E_{A}\left(x_{i}^{*} x_{j}\right) y_{j}\right) \\
& =\sum \tau\left(E_{A}\left(y_{j} y_{i}^{*}\right) E_{A}\left(x_{i}^{*} x_{j}\right)\right)=\left\|y_{i} e_{A} x_{i}^{*}\right\|_{2, \operatorname{Tr}}^{2}
\end{aligned}
$$

Suppose $A \subset M$ is Cartan. Put $\tilde{A}=\{A, J A J\}^{\prime \prime} \subset\langle M, A\rangle$.
Example 2.15. When $A=L^{\infty} X, M=\mathrm{vN} \mathscr{R}$, we have $\tilde{A}=L^{\infty} \mathscr{R}, e_{A}=\chi_{\Delta}$ and $\left.\operatorname{Tr}\right|_{\tilde{A}}=\int d \nu$ on $L^{\infty} \mathscr{R}$. Indeed,

$$
\operatorname{Tr}\left(f e_{A}\right)=\tau(f)=\int_{\Delta} f d \mu=\int f d \nu \quad\left(f \in L^{\infty} X\right)
$$

implies

$$
\operatorname{Tr}\left(u f e_{A} u^{*}\right)=\operatorname{Tr}\left(f e_{A}\right)=\int_{\Delta} f d \mu=\int u f e_{A} u^{*} d \nu \quad\left(f \in L^{\infty} X, u \in \mathcal{N} A\right)
$$

Remark 2.16. When $A \subset M$ is Cartan and $p \in \operatorname{Proj}(A), A_{p} \subset p M p$ is also Cartan since $\mathcal{N}_{p M p}^{p}\left(A_{p}\right)=p \mathcal{N}_{M}^{p}(A) p$.

Example 2.17. When $Y \subset X$, the restricted equivalence $\left.\mathscr{R}\right|_{Y}=Y \times Y \cap \mathscr{R}$ gives $\mathrm{vN}\left(\left.\mathscr{R}\right|_{Y}\right)=p_{Y}(\mathrm{vN} \mathscr{R}) p_{Y}$.

Exercise 2.18. Show that when A is a Cartan subalgebra of a factor $M, \tau p_{1}=\tau p_{2}$ for $p_{1}, p_{2} \in \operatorname{Proj}(A)$ implies the existence of $v \in \mathcal{N}^{p} A$ such that $p_{1} \sim p_{2}$ via v. This implies that given an ergodic relation \mathscr{R} on X, subsets Y_{1} and Y_{2} of X with the same measure, one would obtain $\left(A_{p_{Y_{1}}} \subset M_{p_{Y_{1}}}\right) \simeq\left(A_{p_{Y_{2}}} \subset M_{p_{Y_{2}}}\right)$ via v.

2.3. Theorem of Connes-Feldman-Weiss.

Definition 2.19. A discrete group Γ is said to be amenable when $\ell_{\infty} \Gamma$ has a left Γ invariant state.

Example 2.20. Commutative groups, or more generally solvable groups are amenable. The union of an countable increasing sequence of amenable groups are again amenable.

Definition 2.21. A cartan subalgebra $A \subset M$ is said to be amenable when there exists a state $m: \tilde{A} \rightarrow \mathbb{C}$ invariant under the adjoint action of $\mathcal{N} A$. An orbit equivalence \mathscr{R} on X is said to be amenable when $L^{\infty} X \subset \mathrm{vN} \mathscr{R}$ is amenable.

Remark 2.22. Let $\Gamma \curvearrowright X$ be a measure preserving essentially free action. Since Γ is assumed to be discrete, \mathscr{R} can be identified to $\Gamma \times X$ as a measurable space and an invariant measure on \mathscr{R} is nothing but a product measure on $\Gamma \times X$ of an invariant measure on Γ times an arbitrary measure on X. Thus, \mathscr{R} is amenable if and only if Γ is amenable.

Definition 2.23. A von Neumann algebra M on H is said to be injective when there exists a conditional expectation $\Phi: B(H) \rightarrow M$.

Fact. The above condition is independent of the choice of a faithfull representation $M \hookrightarrow B(H)$. Moreover, M is injective if and only if it is AFD [2].

Theorem 2.24. (Connes-Feldman-Weiss [3) Let M be a factor with separable predual, A Cartan subalgebra of M. The following conditions are equivalent:
(1) The pair $A \subset M$ is amenable.
(2) This pair is AFD in the sense that for any finite subset \mathscr{F} of $\mathcal{N} A$ and a positive real number $\epsilon>0$, there exists a finite dimensional subalgebra B of M such that

- B has a matrix unit consisting of elements of $\mathcal{N}^{p} A$.
- $\left\|v-E_{B}(v)\right\|<\epsilon$ for any $v \in \mathscr{F}$.
(3) (A, M) is isomorphic to $\left(D, \bar{\otimes} M_{2} \mathbb{C}\right.$ where $D=\bar{\otimes} D_{2}$ for the diagonal subalgebra $D_{2} \subset M_{2}$. (Note that $\mathcal{N}^{p} D$ is generated by the "matrix units" of $\left.M_{2^{\infty}}=\otimes M_{2}.\right)$
(4) M is injective.

Lemma 2.25. In the assertion of (2), B may be assumed to be isomorphic to $M_{2^{N}}$ for some N.

Proof of the lemma. Perturbing a bit, we may assume that $\tau\left(e_{i j}^{(d)}\right) \in 2^{-N} \mathbb{N}$ for large enough N where $\left(e_{i j}^{(d)}\right)_{d, 1 \leq i, j \leq n_{d}}$ is a matrix unit of $B=\oplus_{d} M_{n_{d}}$. By taking a partition if necessary, we may assume that $\tau\left(e_{i i}^{(d)}=2^{-N}\right.$ for any d and i. Then, since M is a factor, we have $e_{i i}^{(d)} \sim e_{j j}^{(f)}$ in M for any d, f, i and j. This means that B is contained in a subalgebra of M which is isomorphic to $M_{2^{N}}$.

Proof of $(2) \Rightarrow(3)$: Note that there is a total (with respect to the 2-norm) sequence $\left(v_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{N}^{p} A$. We are going to construct an increasing sequence of subalgebras $\left(B_{k}\right)_{k}$ in M with compatible matrix units $\left(e_{i, j}^{(k)}\right)_{i, j}$ satisfying $B_{k} \simeq M_{2^{N_{k}}}$ and $\left\|E_{B_{k}}\left(v_{l}\right)-v_{l}\right\|^{2}<\frac{1}{k}$ for $l \leq k$.

Suppose we have constructed B_{1}, \ldots, B_{k}. Applying the assertion of (2) to the finite set $\mathscr{F}^{\prime}=\left\{e_{i, r}^{(k)} v_{l} e_{r, 1}^{(k)}\right\}$, we obtain a matrix units $\left(f_{i j}\right)_{i, j}$ in $\mathcal{N}^{p} A$ such that $\sum f_{i i}=e_{11}^{(k)}$ and

$$
\left\|E_{\operatorname{span} f_{i j}}(x)-x\right\|<\frac{1}{n(k)^{2}(k+1)}
$$

where $n(k)$ denotes the size of B_{k}. By the assumption that A is a maximal abelian subalgebra in M, the projections of $\mathcal{N}^{p} A$ are actually contained in A. Thus we obtain an inclusion $D \subset A$ (hence the equality between them) under the identification $M \simeq \otimes_{\mathbb{N}} M_{2}=\left(\cup B_{k}\right)^{\prime \prime}$.

Proof of $(3) \Rightarrow(4)$: By assumption $M=\left(\cup B_{n}\right)^{\prime \prime}$ where B_{n} are finite dimensional subalgebras of $M, M^{\prime}=\left(\cup J B_{n} J\right)^{\prime \prime}$. Let Φ_{n} denote the conditional expectation of $B(H)$ onto $\left(J B_{n} J\right)^{\prime}: \Phi_{n}(x)=\int_{\mathcal{U}\left(J B_{n} J\right)} u x u^{*} d u$ where $d u$ denotes the normalized Haar measure on the compact group $\mathcal{U}\left(J B_{n} J\right)$. For each x, the sequence $\left(\left\|\Phi_{n}(x)\right\|\right)_{n}$ is bounded above by $\|x\|$. Thus we can take a Banach limit $\Phi(x)$ of $\left(\Phi_{n}(x)\right)_{n}$, which defines a conditional expectation of $B(H)$ onto $\cap_{n}\left(J B_{n} J\right)^{\prime}=\left(\cup J B_{n} J\right)^{\prime}=M$.

Proof of (4) \Rightarrow (1): Put $H=L^{2} M$ and let Φ be a conditional expectation of $B(H)$ onto M. Then $\tau \Phi$ is an $\operatorname{Ad} \mathcal{U} M$-invariant state on $B(H) . \mathcal{N} A$ is obviously contained in $\mathcal{U} M$ and so is \tilde{A} in $B(H)$.
Remark 2.26. When $A \subset M$ is an amenable Cartan subalgebra and e is a projection in A, the Cartan subalgebra $A_{e} \subset M_{e}$ is also amenable.

We are going to complete the proof of Theorem 2.24 by showing (1) \Rightarrow (2).
Lemma 2.27. Let ϕ be a measure preserving partial Borel isomorphism on a standard probability space (X, μ). Let E_{0} denote the fixed point set $X^{\phi}=\{x \in \operatorname{dom} \phi: \phi x=x\}$. There exist Borel sets B_{1}, B_{2}, B_{3} of X satisfying $X=\coprod_{0 \leq i \leq 3} E_{i}$ and $\phi E_{i} \cap E_{i}$ is null for $i>0$.

Proof. Take E_{1} to be a Borel set with a maximal measure which satisfies $\phi E_{1} \cap E_{1}=$ \emptyset. Put $E_{2}=\phi E_{1}$. Then $\phi E_{2} \cap E_{2}=\emptyset$ by the injectivity of ϕ. Finally, put $E_{3}=\complement\left(\cup_{0 \leq i \leq 2} E_{i}\right)$. Then $\phi E_{3} \cap E_{3}$ is null by the maximality of E_{1}.

Corollary 2.28. For any finite set \mathscr{F} of $\mathcal{N}^{p} A$, there exist projections q_{1}, \ldots, q_{m} of $A\left(m=4^{|\mathscr{F}|}\right)$ satisfying $\sum q_{k}=1$ and that $q_{k} v q_{k}$ is either 0 or in $\mathcal{U} A_{q_{k}}$ for any $v \in \mathscr{F}$.

Lemma 2.29. (Dye) For any finite subset $\mathscr{F} \subset \mathcal{N} A$ and $\epsilon>0$, there exists $a \in \tilde{A}_{+}$ with $\operatorname{Tr}(a)=1$ and $\sum_{u \in \mathscr{F}}\left\|u a u^{*}-a\right\|_{1, \operatorname{Tr}}<\epsilon$. (Here, $\|x\|_{1, \operatorname{Tr}}=\operatorname{Tr}(|x|)$.)

Proof. Let $m: \tilde{A} \rightarrow \mathbb{C}$ be an $\operatorname{Ad} \mathcal{N} A$-invariant state. Since L^{1} is w^{*}-dense in $\left(L^{\infty}\right)^{*}$, there exists a net $a_{i} \in \tilde{A}_{+}$satisfying $\operatorname{Tr}\left(a_{i}\right)=1$ and $\operatorname{Tr}\left(a_{i} x\right) \rightarrow m(x)$ for any $x \in \tilde{A}$. Then, for any $u \in \mathcal{N} A$ and $x \in \tilde{A}$

$$
\operatorname{Tr}\left(\left(u a_{i} u^{*}-a_{i}\right) x\right)=\operatorname{Tr}\left(a_{i} u^{*} x u\right)-\operatorname{Tr}\left(a_{i} x\right) \rightarrow m\left(u^{*} x u\right)-m(x)=0
$$

Thus $u a_{i} u^{*}-a_{i}$ is weakly convergent to 0 . By Hahn-Banach's theorem, by taking the convex closure of the sets $\left\{u a_{i} u^{*}-a_{i}: k<i\right\}$, we find a sequence $\left(b_{i}\right)_{i}$ as convex combinations of the a_{i} satisfying $\left\|u b_{i} u^{*}-b_{i}\right\|_{1, \operatorname{Tr}} \rightarrow 0$ uniformly for $u \in \mathscr{F}$.

Lemma 2.30. (Namioka) Let \mathscr{F}, ϵ be as above. There exists a projection p of \tilde{A} satisfying $\operatorname{Tr}(p)<\infty$ and $\sum_{u \in \mathscr{F}}\left\|u p u^{*}-p\right\|_{2, \operatorname{Tr}}^{2}<\epsilon\|p\|_{2, \operatorname{Tr}}^{2}$.

Proof. Let $a \in \tilde{A}_{+}$be an element given by Lemma 2.29. For each $r>0$ put $P_{r}=\chi_{(r, \infty)}(a)$. We have

$$
\left\|u a u^{*}-a\right\|_{1, \operatorname{Tr}}=\int_{0}^{\infty}\left\|u P_{r} u^{*}-P_{r}\right\|_{1, \operatorname{Tr}} d r \quad 1=\|a\|_{1, \operatorname{Tr}}=\int_{0}^{\infty}\left\|P_{r}\right\|_{1, \operatorname{Tr}} d r
$$

Hence

$$
\int_{0}^{\infty} \sum_{u \in \mathscr{F}}\left\|u P_{r} u^{*}-P_{r}\right\|_{1, \operatorname{Tr}} d r<\epsilon \int_{0}^{\infty}\left\|P_{r}\right\|_{1, \operatorname{Tr}} d r
$$

Thus there exists r such that $p=P_{r}$ satisfies $\sum\left\|u p u^{*}-p\right\|_{1, \operatorname{Tr}}<\epsilon\|p\|_{1, \operatorname{Tr}}$. Since the summands are differences of projections, $\|-\|_{1, \operatorname{Tr}}$ is approximately equal to $\|-\|_{2, \operatorname{Tr}}^{2}$.

Lemma 2.31. (Local AFD approximation by Popa) Let \mathscr{F}, ϵ be as above. There exists a finite dimensional subalgebra $B \subset M$ with matrix units in $\mathcal{N}^{p} A$, satisfying $\left\|E_{B}(e u e)-\left(u-e^{\perp} u e^{\perp}\right)\right\|_{2}^{2}<\epsilon\|e\|_{2}^{2}$ for every $u \in \mathscr{F}$, where e denotes the multiplicative unit of B and E_{B} the conditional expectation $e M e \rightarrow B$.

Proof. We may assume $1 \in \mathscr{F}$. Take $p \in \tilde{A}_{+}$as in Lemma 2.30. Since $\operatorname{Tr} p<\infty$, we may assume that p can be written as $\sum_{i=1}^{n} v_{i} e_{A} v_{i}^{*}$ for $v_{i} \in \mathcal{N}^{p} A$. By Corollary 2.28 there exist projections $\left(q_{k}\right)_{k}$ in A with $\sum q_{k}=1$ and each $q_{k} v_{i}^{*} u v_{j} q_{k}$ is either 0 or is in $\mathcal{U}\left(A q_{k}\right)$ for $1 \leq i, j \leq n, u \in \mathscr{F}$. Taking finer partition if necessary, we deduce that $\operatorname{dist}\left(q_{k} v_{i}^{*} u v_{j} q_{k}, \mathbb{C} q_{k}\right)<\sqrt{\epsilon / n}$.

On the other hand,

$$
\sum_{u \in \mathscr{F}, k}\left\|\left(u p u^{*}-p\right) J q_{k} J\right\|_{2, \operatorname{Tr}}^{2}=\sum_{u \in \mathscr{F}}\left\|u p u^{*}-p\right\|_{2, \operatorname{Tr}}^{2}<\epsilon\|p\|_{2, \operatorname{Tr}}^{2}=\epsilon \sum_{k}\left\|p J q_{k} J\right\|_{2, \operatorname{Tr}}^{2}
$$

Hence for some $k, q=q_{k}$ satisfies $\sum\left\|\left(u p u^{*}-p\right) J q J\right\|^{2} \leq \epsilon\|p J q J\|^{2}$. By $p J q J=$ $\sum v_{i} e_{A} J q J v_{i}^{*}=\sum v_{i} q e_{A} v_{i}^{*}$ since A is commutative, replacing v_{i} by $v_{i} q$, we may assume $v_{i}^{*} v_{j}=\delta_{i, j} q$ and $p J q J=p$. (Note that $p=\sum v_{i} e_{A} v_{i}^{*}$ is a projection, which means that the ranges of v_{i} are mutually orthogonal.)

This way we obtain $\sum\left\|u p u^{*}-p\right\|^{2} \leq \epsilon\|p\|^{2}$, each $v_{i} u v_{j}^{*} \in A_{q}$ is close to a constant $z_{i j}$ by $\sqrt{\epsilon / n}$, and $\left(v_{i}\right)_{i}$ is a matrix unit in A_{q}. Put $e=\sum v_{i} v_{i}^{*}$. Thus,

$$
\|p\|_{2, \operatorname{Tr}}^{2}=\operatorname{Tr}\left(\sum v_{i} e_{A} v_{i}^{*}\right)=\tau\left(\sum v_{i} v_{i}^{*}\right)=\|e\|_{\tau}^{2}
$$

Consequently,

$$
\begin{aligned}
\left\|u p u^{*}-p\right\|_{2, \operatorname{Tr}}^{2} & =2 \operatorname{Tr} p-2 \operatorname{Tr}\left(u p u^{*} p\right)=2 \tau(e)-2 \operatorname{Tr}\left(\sum u v_{i} e_{A} v_{i}^{*} u^{*} v_{j} e_{A} v_{j}\right) \\
& =2 \tau(e)-2 \tau\left(\sum u v_{i} v_{i}^{*} u^{*} v_{j} v_{j}^{*}\right)=2 \tau(e)-2 \tau\left(u e u^{*} e\right) \\
& =\left\|u e u^{*}-e\right\|_{2, \tau}^{2} .
\end{aligned}
$$

Hence $\sum_{u \in \mathscr{F}}\|u e-e u\|_{2}^{2}<\epsilon\|e\|_{2}^{2}$. Now eue $=\sum v_{i} v_{i}^{*} u v_{j} v_{j}^{*} \approx \sum z_{i j} v_{i} v_{j}^{*} \approx \epsilon\|e\|^{2}$ in $\|-\|_{2, \tau}^{2}$. Hence

$$
\left\|e u e-E_{B}(e u e)\right\|_{2, \tau}^{2}<\epsilon\|e\|_{2, \tau}^{2} \quad\left\|E_{B}(e u e)-\left(u-e^{\perp} u e^{\perp}\right)\right\|_{2, \tau}^{2}<2 \epsilon\|e\|_{2, \tau}^{2} .
$$

When we have a family $\left(B_{i}\right)$ of mutually orthogonal finite dimensional algebras satisfying the assertion of the lemma, $e=\sum 1_{B_{i}}$ satisfies

$$
\left\|E_{\oplus B_{i}}(e u e)-\left(u-e^{\perp} u e^{\perp}\right)\right\|_{2, \tau}^{2}<2 \epsilon\|e\|_{2, \tau}^{2}
$$

Lemma 2.32. In the notation of Lemma 2.31, $e=1$.
Proof. Otherwise we can apply Lemma 2.31 to $A_{e^{\perp}} \subset M_{e^{\perp}}$ and $\mathscr{F}^{\prime}=e^{\perp} \mathscr{F} e^{\perp}$, to obtain a finite dimensional algebra $B_{0} \subset M_{e^{\perp}}$ satisfying the assertion of Lemma 2.31. Use the Pythagorean equality.

Proof of $(1) \Rightarrow(2)$: Take B_{1}, \ldots, B_{m} satisfying $\left\|\sum_{m} 1_{B_{i}}\right\|_{2}^{2}>1-\epsilon$. Put $B=$ $\oplus_{i} B_{i} \oplus \mathbb{C}\left(\sum 1_{B_{i}}\right)^{\perp}$. Then we have $\left\|E_{B}(u)-u\right\|_{2}^{2}<3 \epsilon$ for $u \in \mathscr{F}$.

3. L^{2}-Betti numbers

3.1. Introduction. Let $\mathfrak{F}(\Omega, X)$ denote the set of the mappings of a set Ω into another set X. Let Γ be a discrete group, λ the left regular representation of Γ on $\ell_{2} \Gamma$. We have the "standard complex" of right Γ modules

$$
0 \longrightarrow \ell_{2} \Gamma \xrightarrow{\partial} \mathfrak{F}\left(\Gamma, \ell_{2} \Gamma\right) \xrightarrow{\partial} \mathfrak{F}\left(\Gamma^{2}, \ell_{2} \Gamma\right) \longrightarrow \cdots
$$

given by

$$
\begin{aligned}
& \partial(f)\left(s_{1}, \ldots, s_{n+1}\right)=\lambda\left(s_{1}\right) f\left(s_{2}, \ldots, s_{n+1}\right)+ \\
& \quad \sum_{1 \leq j \leq n}(-1)^{j} f\left(s_{1}, \ldots, s_{j} s_{j+1}, \ldots, s_{n+1}\right)+(-1)^{n+1} f\left(s_{1}, \ldots, s_{n}\right) .
\end{aligned}
$$

Conceptually, the above complex can be regarded as $\operatorname{Hom}_{\mathbb{C} \Gamma}\left(P_{*}, \mathbb{C} \Gamma \ell_{2} \Gamma\right)$ where P_{*} denotes the standard free resolution of the trivial left Γ-module \mathbb{C}. For each $n \in \mathbb{N}$, P_{n} is the vector space with basis Γ^{n+1} as a vector space over \mathbb{C}. Since Γ^{n+1} is a left Γ-set by $s .\left(s_{0}, \ldots, s_{n}\right)=\left(s . s_{0}, s_{1}, \ldots, s_{n}\right), P_{n}$ has the canonically induced left action of Γ.

Let $H_{i}\left(\Gamma, \ell_{2} \Gamma\right)$ denote the i-th (co)homology group of this complex. Note that this complex consists of $R \Gamma$ modules given by the action on $\ell_{2} \Gamma$, with boundary maps being $R \Gamma$-homomorphisms. The space of 1-cocycles

$$
Z_{1}=\left\{b \in \mathfrak{F}\left(\Gamma, \ell_{2} \Gamma\right): b(s t)=b(s)+\lambda(s) b(t)\right\}
$$

is identified with the space of the derivations from Γ to $\ell_{2} \Gamma$ with respect to the trivial right action. When $b \in Z_{1}$ the map

$$
s \mapsto\left(\begin{array}{cc}
\lambda(s) & b(s) \\
0 & 1
\end{array}\right)
$$

of Γ into $B\left(\ell_{2} \Gamma \oplus \mathbb{C}\right)$ becomes multiplicative. On the other hand the space of 1-coboundaries

$$
B_{1}=\left\{b \in \mathfrak{F}\left(\Gamma, \ell_{2} \Gamma\right): \exists f \in \ell_{2} \Gamma, b(s)=\lambda(s) f-f\right\}
$$

is identified with the space of the inner derivations. Note that for any $b \in Z_{1}$, there is a function $f \in \mathfrak{F}(\Gamma, \mathbb{C})$ satisfying $b(s)=\lambda(s) f-f$ if we do not require the square summability of f. Indeed, a vector system $(b(s))_{s \in \Gamma}$ is a derivation if and only if we have $\left\langle b(s), \delta_{t}\right\rangle=\left\langle b(s t)-b(t), \delta_{e}\right\rangle$ for any $s, t \in \Gamma$, and in such a case we may put $f(s)=\left\langle b(s), \delta_{s}\right\rangle$ to obtain $b(s)=\lambda(s) f-f$.

Remark 3.1. The 0 -th homology grouop $H_{0}=Z_{0}$ is the space of the Γ-invariant vectors in $\ell_{2} \Gamma$. Thus this becomes the 0 -module if and only if Γ is infinite.

In the following we assume that Γ admits a finite generating set \mathscr{S}. Let $D \Gamma$ denote the space Z_{1} of the derivations, Inn $D \Gamma$ the space B_{1} of the inner derivations. Let $\mathscr{O}_{\mathscr{S}}$ denote the mapping $b \mapsto(b(s))_{s \in \mathscr{S}}$ of $D \Gamma$ into $\oplus_{\mathscr{S}} \ell_{2} \Gamma$. This is an injective $R \Gamma$-module map. Note that the range of $\mathscr{O}_{\mathscr{S}}$ is closed. Indeed, $(f(s))_{s \in \mathscr{S}}$ is in $\operatorname{ran} \mathscr{O}_{\mathscr{S}}$ if and only if

$$
f\left(s_{1}\right)+\lambda\left(s_{1}\right) f\left(s_{2}\right)+\cdots+\lambda\left(s_{1} \cdots s_{n-1}\right) f\left(s_{n}\right)=0
$$

holds for each relation $s_{1} \cdots s_{n}=e$ among elements of \mathscr{S}.
A sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of unit vectors is said to be an approximate kernel of the restriction $\left.\mathscr{O}_{\mathscr{S}}\right|_{\text {Inn } D \Gamma}$ when $\lambda(s) f_{n}-f_{n}$ tends to zero (in norm) for any $s \in$ \mathscr{S}. $\left.\mathscr{O}_{\mathscr{S}}\right|_{\text {Inn } D \Gamma}$ has an approximate kernel if and only if Γ is amenable. Thus $\mathscr{O}_{\mathscr{S}}(\operatorname{Inn} D \Gamma)$ is closed if and only if Γ is finite or non-amenable.

Let P, Q denote the orthogonal projections onto $\mathscr{O}_{\mathscr{S}}(D \Gamma)$ and $\mathscr{O}_{\mathscr{S}}(\operatorname{Inn} D \Gamma)$. These commute with the diagonal action of $R \Gamma$ on $\oplus_{\mathscr{S}} \ell_{2} \Gamma$, i.e. $P, Q \in M_{\mathscr{S}} L \Gamma$. We can measure them by the trace $\tilde{\tau}=\operatorname{Tr} \otimes \tau$. The first Betti number $\beta_{1}^{(2)}=$ $\operatorname{dim}_{L \Gamma} H_{1}\left(\Gamma, \ell_{2}\right)$ is equal to the difference $\tilde{\tau}(P)-\tilde{\tau}(Q)$.

Example 3.2. When Γ is a finite group, $\beta_{0}^{(2)}=\frac{1}{|\Gamma|}$ while $\beta_{i}^{(2)}=0$ for $0<i$ because any $\mathbb{C} \Gamma$ module is projective. On the other hand when Γ is equal to the free group \mathbb{F}_{n} generated by a set \mathscr{S} consisting of n elements, $\operatorname{ran} \mathscr{O}_{\mathscr{S}}=\oplus \mathscr{S} \ell_{2} \Gamma$ and $\beta_{1}^{(2)}=n-1$.

We omit the injection $\mathscr{O}_{\mathscr{S}}$ and identify $D \Gamma$ with a subspace of $\oplus \mathscr{S} \ell_{2} \Gamma$. Thus $\partial^{0}: \ell_{2} \Gamma \rightarrow \mathfrak{F}\left(\Gamma, \ell_{2} \Gamma\right)$ factors through $\oplus_{\mathscr{S}} \ell_{2} \Gamma$ and $\partial^{0}: \ell_{2} \Gamma \rightarrow \oplus_{\mathscr{S}} \ell_{2} \Gamma$ is written as $f \mapsto(\lambda(s) f-f)_{s \in \mathscr{S}}$.

Let $\epsilon_{1}^{(2)}: \oplus_{\mathscr{S}} \ell_{2} \Gamma \rightarrow \ell_{2} \Gamma$ denote the adjoint of ∂. Thus $\epsilon_{1}^{(2)}$ is expressed as $\left(\xi_{s}\right)_{s \in \mathscr{S}} \mapsto \sum_{s \in \mathscr{S}}\left(\lambda\left(s^{-1}\right)-1\right) \xi_{s}$ and the orthogonal complement of ker $\epsilon_{1}^{(2)}$ is equal to the closure of ran $\partial=\operatorname{Inn} D \Gamma$.

Proposition 3.3. When we identify $\mathbb{C} \Gamma$ with the space of vectors with finite support in $\ell_{2} \Gamma$, we have $D \Gamma=\left(\operatorname{ker} \epsilon_{1}^{(2)} \cap \oplus_{\mathscr{S}} \mathbb{C} \Gamma\right)^{\perp}$.

Proof. The space $\mathbb{C} \Gamma$ has $\mathfrak{F}(\Gamma, \mathbb{C})$ as its algebraic dual. A vector system $b \in \oplus \mathscr{S} \ell_{2}$ is in $D \Gamma$ if and only if there is an $f \in \mathfrak{F}(\Gamma, \mathbb{C})$ such that $b(s)=\lambda(s) f-f$. The latter implies

$$
\forall \xi \in \operatorname{ker} \epsilon_{1}^{(2)} \cap \oplus \mathscr{S} \mathbb{C} \Gamma,\langle\xi, b\rangle=\sum_{s}\langle\xi(s), b(s)\rangle=\sum_{s}\left\langle\left(\lambda\left(s^{-1}\right)-1\right) \xi(s), f\right\rangle=0
$$

Conversely, when $(b(s))_{s \in \mathscr{S}}$ is orthogonal to $\operatorname{ker} \epsilon_{1}^{(2)} \cap \oplus_{\mathscr{S}} \mathbb{C} \Gamma$, the functional $\langle b,-\rangle$ on $\oplus_{\mathscr{S}} \mathbb{C} \Gamma$ is induced by a functional f on the kernel of the map $\mathbb{C} \Gamma \rightarrow \mathbb{C}$. This f can be extended to a linear map on the whole $\mathbb{C} \Gamma$, and we have $b(s)=\lambda(s) f-f$, i.e. $b \in D \Gamma$.

Remark 3.4. The i-th cohomology group $H^{i}\left(\Gamma, \ell_{2} \Gamma\right)$ is dimension isomorphic to $\operatorname{Tor}_{i}^{\mathbb{C} \Gamma}\left(\mathbb{C}, \ell_{2} \Gamma\right)$. This is seen by considering the exact functors $E \rightarrow E^{*}$ on the category of $L \Gamma$-modules and that of $L \Gamma$-bimodules, where E^{*} denotes the dual module of the weak closure of E. We have functors $(A, B) \rightarrow A \otimes_{\mathbb{C} \Gamma} B$ and $(A, B) \rightarrow$
$\operatorname{Hom}_{\mathbb{C}}(A, B)$ of $\mathbb{C} \Gamma-\bmod \times L \Gamma$-bimod into $L \Gamma$-mod. Then the functor equivalence $\left(A \otimes_{\mathbb{C} \Gamma} B\right)^{*} \simeq \operatorname{Hom}_{\mathbb{C}}\left(A, B^{*}\right)$ up to dimension implies the dimension equivalence between the derived functors $\operatorname{Tor}_{p}(A, B)^{*} \simeq \operatorname{Ext}^{p}\left(A, B^{*}\right)$. The case $A=\mathbb{C}$ and $B=\ell_{2} \Gamma$ describes the desired isomorphism.

For example, we have a flat resolution P. of the trivial Γ-module \mathbb{C} with $P_{0}=\mathbb{C} \Gamma$ and $P_{1}=\mathbb{C} \Gamma \otimes_{\mathbb{C}} \mathbb{C} \mathscr{S}$, with $d_{1}(a \otimes b)=a b-a$. The first torsion group $\operatorname{Tor}_{1}^{\mathbb{C} \Gamma}\left(\ell_{2} \Gamma, \mathbb{C}\right)$ is by definition the quotient $\operatorname{ker}\left(i d_{\ell_{2} \Gamma} \otimes d_{1}\right) / \ell_{2} \Gamma \otimes \operatorname{ker} d_{1}$. Now $i d_{\ell_{2} \Gamma} \otimes d_{1}=\epsilon_{1}^{(2)}$ implies $\operatorname{ker}\left(i d_{\ell_{2} \Gamma} \otimes d_{1}\right)=\operatorname{Inn} D \Gamma^{\perp}$ while $\ell_{2} \Gamma \otimes \operatorname{ker} d_{1}=\operatorname{ker} \epsilon_{1}^{(2)} \cap \oplus_{\mathscr{S}} \mathbb{C} \Gamma$ implies $\ell_{2} \Gamma \otimes \operatorname{ker} d_{1}=D \Gamma^{\perp}$.
3.2. Operators affiliated to a finite von Neumann algebra. Let (M, τ) be a finite von Neumann algebra with a faithful normal tracial state (τ is unique if M is a factor), $L^{2} M$ the induced Hilbert $M-M$ module. For each $n \in \mathbb{N}$ put $\tilde{\tau}=\tau \otimes \operatorname{Tr}$ on $M \otimes M_{n} \mathbb{C} \simeq M_{n} M$.

Definition 3.5. Let H be a left Hilbert module over M. A densely defined closed operator T on H is said to be affiliated to M, written as $T \sim M$, when we have $u T=T u$ for any $u \in \mathcal{U}\left(M^{\prime}\right)$. Here the equality entails the agreement of the domains, i.e. $u \operatorname{dom} T=\operatorname{dom} T$.

Remark 3.6. An operator T is affiliated to M if and only if for the polar decomposition $T=v|T|$ the partial isometry v and the spectral projections of $|T|$ are in M. Note that in such cases τ takes the same value on the left support $l(T)=v v^{*}$ of T and the right support $r(T)=v^{*} v$.

We consider the case $H=L^{2} M$. Suppose $T \sim M$. It is said to be square integrable when $\hat{1} \in \operatorname{dom} T$. This condition is equivalent to

$$
\tau\left(|T|^{2}\right)=\|T \hat{1}\|^{2}=\int t^{2} d \tau(E)<\infty
$$

for the spectral measure $T=\int t d E$ of T. For each $\xi \in L^{2} M$ let L_{ξ}° denote the unbounded operator defined by $\operatorname{dom} L_{\xi}^{\circ}=\hat{M} \subset L^{2} M$ and $L_{\xi}^{\circ} x=\xi x$.

Proposition 3.7. The operator $L_{\xi}^{\circ} x$ is closable and its closure L_{ξ} is affiliated to M. Moreover we have $L_{\xi}^{*}=L_{J \xi}$. If T is affiliated to M and square integrable, $T=L_{T \hat{1}}$.

Proof. We show the inclusion $L_{J \xi}^{\circ} \subset\left(L_{\xi}^{\circ}\right)^{*}$. For any elements $x, y \in M$,

$$
\left\langle L_{\xi}^{\circ} \hat{x}, \hat{y}\right\rangle=\langle\xi x, y\rangle=\langle J \hat{y}, J(\xi x)\rangle=\left\langle\hat{1} y^{*}, x^{*} J \xi\right\rangle=\langle\hat{x},(J \xi) y\rangle
$$

On the other hand, when $u \in \mathcal{U} \mathscr{R}_{M}, u L_{\xi}^{\circ}=L_{\xi}^{\circ} u$ implies $u L_{\xi}=L_{\xi} u$.
Next we show the inclusion $\left(L_{\xi}\right)^{*} \subset L_{J \xi}$. Let $\eta \in \operatorname{dom}\left(L_{\xi}^{\circ}\right)^{*}$. Consider the polar decomposition $L_{J \xi}=v\left|L_{J \xi}\right|$ and the spectral decomposition $\left|L_{J \xi}\right|=\int_{0}^{\infty} \lambda d e_{\lambda}$. Then $e_{\lambda} v^{*} L_{J \xi}=e_{\lambda}\left|L_{J \xi}\right|$ is bounded (i.e. is in M_{+}) for any λ. By definition, $L_{J \xi}(y \hat{1})=(J \xi) y$ for $y \in M$. Hence $e_{\lambda} v^{*} L_{J \xi}(y \hat{1})=e_{\lambda} v^{*}((J \xi) y)=\left(e_{\lambda} v^{*} J \xi\right) y$. Putting $y=1$, we obtain $e_{\lambda} v^{*} L_{J \xi} \hat{1}=e_{\lambda} v^{*} J \xi \in M . \hat{1}$ for any $\lambda>0$.

Thus, by definition of $\left(L_{\xi}\right)^{*}$, we have

$$
\begin{aligned}
\left\langle\left(L_{\xi}\right)^{*} \eta,\left(e_{\lambda} v^{*}\right)^{*} y \hat{1}\right\rangle & =\left\langle\eta, L_{\xi}\left(e_{\lambda} v^{*}\right)^{*} y \hat{1}\right\rangle=\left\langle\eta, \xi\left(e_{\lambda} v^{*}\right)^{*} y\right\rangle=\left\langle\eta, J y^{*}\left(e_{\lambda} v^{*}\right) J \xi\right\rangle \\
& =\left\langle\eta, J y^{*} e_{\lambda} v^{*} L_{J \xi} \hat{1}\right\rangle \quad \text { (by using above) } \\
& =\left\langle\eta,\left(e_{\lambda} v^{*} L_{J \xi}\right)^{*} y \hat{1}\right\rangle .
\end{aligned}
$$

Hence $e_{\lambda} v^{*}\left(L_{\xi}\right)^{*} \eta=e_{\lambda} v^{*} L_{J \xi} \eta=\left|L_{J \xi}\right| e_{\lambda} \eta$ for any $\lambda>0$. By letting $\lambda \rightarrow \infty, e_{\lambda} \eta \rightarrow$ η and $\left|L_{J \xi}\right| e_{\lambda} \eta \rightarrow v^{*}\left(L_{\xi}\right)^{*} \eta$. Since $\left|L_{J \xi}\right|$ is a closed operator, $\eta \in \operatorname{dom}\left(\left|L_{J \xi}\right|\right)=$ $\operatorname{dom}\left(L_{J \xi}\right)$. Hence $\left(L_{\xi}\right)^{*} \subset L_{J \xi}$ and $\left|L_{J \xi}\right|=v^{*}\left(L_{\xi}\right)^{*}$.

Finally, let us prove the last part. Let $T \sim M$ with the polar decomposition $v|T|=T$. Note that $\hat{v}^{*}=\hat{1} v^{*} \in \operatorname{dom} T, \hat{1} \in \operatorname{dom} T^{*}, T^{*} \hat{1}=|T| \hat{v}^{*}$. Put $\xi=T \hat{1}, \eta=$ $T^{*} \hat{1}$. Since $T \sim M, L_{\xi}^{\circ} \subset T, L_{\eta}^{\circ} \subset T^{*}$ and we obtain $L_{\xi} \subset T \subset L_{J \eta}$.
3.3. Projective modules over a finite von Neumann algebra. Let $m, n \in$ \mathbb{N}. We have an isomorphism $\operatorname{Mor}\left(M^{\oplus m}, M^{\oplus n}\right)=M_{m, n}(M)$ by multiplication of matrices on column vectors.

Definition 3.8. An left M-module V is said to be finitely generated projective module when it is a projective object in the category of the M-modules and has a finite set generating itself.

Remark 3.9. Any finitely projective M module is isomorphic to some $M^{\oplus m} . P$ for a natural number m and an idempotent matrix P in $M_{m} M$.

Lemma 3.10. In the above we may replace P with an orthogonal projection $P^{*}=P$ without changing the value of $\tilde{\tau}(P)$.

Proof. Let P_{0} be the right support of $P . P\left(P-P_{0}\right)=0$ implies $P_{0}\left(P-P_{0}\right)=0$. Thus $S=\mathrm{Id}+\left(P-P_{0}\right)$ is invertible. With respect to the orthogonal decomposition Id $=P_{0} \oplus P_{0}^{\perp}$, these operators are expressed as

$$
P_{0}=\left(\begin{array}{cc}
\mathrm{Id} & 0 \\
0 & 0
\end{array}\right), \quad P=\left(\begin{array}{cc}
\mathrm{Id} & 0 \\
? & 0
\end{array}\right), \quad S=\left(\begin{array}{cc}
\mathrm{Id} & 0 \\
? & \mathrm{Id}
\end{array}\right)
$$

The operator $S P_{0}=S P_{0} S^{-1}$ is self adjoint.
Remark 3.11. When $M^{\oplus m} P$ and $M^{\oplus n} Q$ are isomorphic, $\tilde{\tau}(P)=\tilde{\tau}(Q)$.
Definition 3.12. For each finitely projective M-module V isomorphic to $M^{\oplus m} P$ where P is a orthogonal projection in $M_{m} M, \operatorname{dim}_{M} V-\tilde{\tau}(P)$ is called the τ dimension

Lemma 3.13. Let V be a submodule of $M^{\oplus n}$. When V is closed $M^{\oplus n}$ with respect to the L^{2}-norm (V is weakly closed), V is finitely generated and projective.

Proof. The L^{2} completion $\bar{V} \|^{\|\cdot\|_{2}} \subset L^{2} M^{\oplus n}$ is written as $L^{2} M^{\oplus} P$ for an orthogonal projection P. Then V is equal to $M^{\oplus n} P$.

Lemma 3.14. For each $T \in \operatorname{Mor}\left(M^{\oplus m}, M^{\oplus n}\right)$, its kernel and range are finitely generated projective modules.

Proof. Obviously the kernel of T is weakly closed in $M^{\oplus m}$. On the other hand for the projection P such that ker $T=M^{\oplus m} P, T$ induces an isomorphism $M P^{\perp} \rightarrow$ $\operatorname{ran} T$.

Remark 3.15. When a submodule $V \subset M^{\oplus m}$ is finitely generated, V is projective. In fact, $V=M^{\oplus m} A$ for some $A \in M_{m, n}(M)$. Thus we have

$$
V \simeq M^{\oplus n} l(A) \simeq M^{\oplus m} r(A) \simeq \bar{V}
$$

Hence $\operatorname{dim}_{M} V=\operatorname{dim}_{M} \bar{V}$.

Remark 3.16. If $W \subset V$ are finitely generated projective modules, $\operatorname{dim}_{M} W \leq$ $\operatorname{dim}_{M} V$.

Definition 3.17. Let V be an M-module. Put

$$
\operatorname{dim}_{M} V=\sup \left\{\operatorname{dim}_{M} W: W \subset V, W \text { is projective }\right\} \in[0, \infty]
$$

Remark 3.18. Note that the above definition of dim_{M} is compatible with the previous one for finitely generated projective modules. In general, $W \subset V$ implies $\operatorname{dim}_{M} W \leq \operatorname{dim}_{M} V$ and $\left(V_{i}\right)_{i \in I} \uparrow V\left(V=\cup_{i \in I} V_{i}\right)$ implies $\operatorname{dim}_{M} V=\lim _{i} \operatorname{dim}_{M} V_{i}$.

Theorem 3.19. (Lück [6) When

$$
0 \longrightarrow V_{0} \xrightarrow{\iota} V_{1} \xrightarrow{\pi} V_{2} \longrightarrow 0
$$

is exact, we have $\operatorname{dim}_{M} V_{1}=\operatorname{dim}_{M} V_{0}+\operatorname{dim}_{M} V_{2}$.

Proof. When $W \subset V_{2}$ is finitely generated and projective, $\pi^{-1} W$ is identified to $W \oplus \iota V_{0}$. Hence $\operatorname{dim} V_{1} \geq \operatorname{dim} V_{0}+\operatorname{dim} V_{2}$. Conversely, let $W \subset V_{1}$ be finitely generated projective. The weak closure $\overline{\iota V_{0} \cap W}$ is closed in a finite free module, hence is projective. From the sequence $\overline{\iota V_{0} \cap W} \rightarrow W \rightarrow W / \overline{\iota V_{0} \cap W}$, we have $\operatorname{dim} W=\operatorname{dim} \overline{\iota V_{0} \cap W}+\operatorname{dim} W / \overline{\iota V_{0} \cap W}$. Note that there is a natural surjection $W / \iota V_{0} \cap W \rightarrow W / \bar{\iota} \cap W$. By the first part of the argument this implies the dimension inequality $\operatorname{dim} \overline{\iota V_{0} \cap W} \leq \operatorname{dim} \iota V_{0} \cap W$. On the other hand $W / \iota V_{0} \cap W$ is identified to a submodule of V_{2}.

Corollary 3.20. Let V be a finitely generated M-module. We have a decomposition $V=V_{p} \oplus V_{t}$ where V_{p} is projective and $\operatorname{dim} V=\operatorname{dim} V_{p} .\left(\right.$ Hence $\operatorname{dim} V_{t}=0$.)

Proof. We have a surjection $T: M^{\oplus m} \rightarrow V$. Note that ker T may not be closed since we have no matrix presentation of T. Nonetheless, $V \simeq M^{\oplus m} / \operatorname{ker} T$ and the next lemma imply that $V_{p}=M^{\oplus m} / \operatorname{ker} T$ satisfies

$$
\operatorname{dim} V=m-\operatorname{dim} \operatorname{ker} T=m-\operatorname{dim} \overline{\operatorname{ker} T}=\operatorname{dim} V_{p}
$$

Lemma 3.21. Let W be a subset of a finite free module $M^{\oplus m}$. We have $\operatorname{dim} W=$ $\operatorname{dim} \bar{W}$.

Proof. Put $L=\left\{A \in M_{m} M: M^{\oplus} . A \subset W\right\}$. This is a left ideal of $M_{m} M$. We get a right approximate identity A_{i} of L. For the orthogonal projection P such that $\bar{W}=M^{\oplus m} P$, the right support $r\left(A_{i}\right.$ converges to P in strong operator topology (for any normal representation, thus, in the ultrastrong topology). Thus for any $\epsilon>0, P_{\epsilon, i}-\chi_{[\epsilon, 1]}\left(A_{i}^{*} A_{i}\right)$ is in L and converges to P in the ultrastrong operator topology.

Proposition 3.22. For any $L \Gamma$-module V, $\operatorname{dim} V=0$ is equivalent to

$$
\forall \xi \in V, \epsilon>0, \exists P \in \operatorname{Proj} M: \tau P>1-\epsilon \text { and } P \xi=0
$$

Proof. \Rightarrow : Let $\xi \in V$. Consider the exact sequence $0 \rightarrow L \rightarrow M \rightarrow M . \xi \rightarrow 0$ where L is the annihilator of $\xi . \operatorname{dim} L=\operatorname{dim} M$ implies the existence of projections P_{i} convergent to 1 in the ultrastrong topology.
$\Leftarrow:$ If $V \supset M . Q, P$ satisfies $\tau P>1-\tau Q$ and $P Q \neq 0$.
Definition 3.23. A homomorphism $\phi: V \rightarrow W$ of L-modules is said to be a dimension isomorphism when $\operatorname{dim}_{M} \operatorname{ker} \phi=\operatorname{dim}_{M} \operatorname{cok} \phi=0$.

Remark 3.24. The torsion N-modules $\mathcal{T}=\left\{V: \operatorname{dim}_{N} V=0\right\}$ form a Serre subcategory of N-mod. Analyzing N-modules up to dimension isomorphisms amounts to considering the localization $N-\bmod / \mathcal{T}$ of $N-\bmod$ by \mathcal{T}. Thus, in general, when a morphism $V_{*} \rightarrow W_{*}$ of complexes is a dimension isomorphism at each degree, the induced homomorphism between the cohomology groups is also an dimension isomorphism because it factors through an isomorphism in the localization category $\mathcal{C}^{*}(N-\bmod / \mathcal{T})$ of the N-module complex category over the torsion module category.

Lemma 3.25. The standard inclusion $M \rightarrow L^{2}(M)$ is a dimension isomorphism.
Proof. Let $\xi \in L^{2} M$. We get the corresponding square integrable operator affiliated with M. Put $P_{n}=\chi_{[0, n]}\left(\xi \xi^{*}\right) \in \operatorname{Proj} M$. Then $P_{n} \xi \in M$ and $P_{n} \rightarrow 1$, thus $P_{n}[\xi]-0$ in the quotient $L^{2} M / M$.

When H is a Hilbert M-module, i.e. a normal representation of M on H, $H \simeq L^{2} M^{\oplus n} . P$ for some cardinal n and an idempotent P in $M_{n} M$.

Lemma 3.26. In the above notation, $\operatorname{dim}_{M} H=\tilde{\tau}(P)$.
Proof. We have the following commutative diagram

The cokernel in the lower row has dimension 0 , thus so does the one in the upper row.

Definition 3.27. $\beta_{n}^{(2)}(\Gamma)=\operatorname{dim}_{L \Gamma} \operatorname{Tor}_{n}^{\mathbb{C}}\left(L \Gamma, \mathbb{C}_{\text {triv }}\right)$ is called the n-th L^{2}-Betti number of Γ.

Remark 3.28. $\beta_{n}^{(2)}(\Gamma)$ is equal to $\operatorname{dim}_{L \Gamma} \operatorname{Tor}_{n}^{\mathbb{C}}\left(\ell_{2} \Gamma, \mathbb{C}_{\text {triv }}\right)$.

Example 3.29. $\beta_{n}^{(2)}\left(\mathbb{F}_{r}\right)=r-1$ when $n=2,0$ otherwise. This is seen as follows: let g_{1}, \ldots, g_{r} be the standard generators of \mathbb{F}_{r}. A free resolution of the trivial $\mathbb{C}\left[\mathbb{F}_{r}\right]$-module \mathbb{C} is given by

$$
0 \longrightarrow\left(\mathbb{C}\left[\mathbb{F}_{r}\right]\right)^{r} \xrightarrow[d_{1}]{ } \mathbb{C}\left[\mathbb{F}_{r}\right] \longrightarrow{ }_{\alpha}
$$

where $d_{1}:\left(\xi_{k}\right)_{k=1}^{r} \mapsto \sum\left(\lambda_{g_{k}}^{*}-1\right) \xi_{k}$ and α is the augmentation map. Now, d_{1} is injective: let $\chi_{j} \in \ell_{\infty} \mathbb{F}_{r}$ be the characteristic function of $\mathbb{F}_{r} g_{j}$. Then $\left(\lambda_{g_{k}}-1\right) \chi_{j}=$ $\delta_{j, k} \delta_{e}$ and $\left(\xi_{k}\right)_{k} \in \operatorname{ker} d_{1}$ implies

$$
0=\left\langle\sum_{k}\left(\lambda_{g_{k}}^{*}-1\right) \xi_{k}, \chi_{j}\right\rangle=\sum_{k}\left\langle\xi_{k},\left(\lambda_{g_{k}}-1\right) \chi_{j}\right\rangle=\xi_{j}(e) .
$$

Replacing χ_{j} by $\chi_{j}^{t}=\chi_{j}\left(-t^{-1}\right)$ for $t \in \Gamma$, we have $\xi_{j}(t)=0$ for any j and t. Thus, the torsion group is the cohomology of the complex

$$
0 \longrightarrow\left(L^{2} \mathbb{F}_{r}\right)^{r} \longrightarrow L^{2} \mathbb{F}_{r} \longrightarrow 0
$$

Let R be a ring. Recall that a right R-module N is flat if and only if the tensor product functor $N \otimes_{R}$ - preserves injections $V \hookrightarrow F$ where F is a finitely generated free module. The latter holds if and only if $N \otimes_{R}$ - preserves the injectivity of inclusion $I \hookrightarrow R$ of the left ideals.

Theorem 3.30. Let $M \hookrightarrow N$ be a trace preserving inclusion of finite von Neumann algebras. Then N is flat over M and $\operatorname{dim}_{N} N \otimes_{M} V=\operatorname{dim}_{M} V$ for any M-module V.

Proof. Recall that any finitely generated submodule of a free M-module is projective. (That is, M is semihereditary.) To see this, let V be a finitely generated submodule of a finitely generated free module $M^{\oplus m} . V \simeq M^{\oplus n} A$ for some (m, n) matrix A. Then V is projective, being isomorphic to $M^{\oplus} \cdot l(A)$. Now,

$$
N \otimes V \simeq N^{\oplus n} . l(A) \simeq N^{\oplus m} A \hookrightarrow N^{\oplus} \simeq N \otimes M^{\oplus m}
$$

Thence N is flat over M.
Let V be a finitely generated M-module. Suppose we had an inclusion $\Phi: M^{\oplus m} . P \hookrightarrow$ V of a projective module. Then $N^{\oplus m} . P \hookrightarrow N \otimes V$ by the flatness of N. This shows that $\operatorname{dim}_{N} N \otimes_{M} V \leq \operatorname{dim}_{M} V$. On the other hand, for any surjection $\pi M^{\oplus n} \Rightarrow V$, the induced homomorphism $\pi_{*}: N^{\oplus n} \rightarrow N \otimes V$ is surjective and $\operatorname{dim} N \otimes V=n-\operatorname{dim} \pi_{*}$, thus $\operatorname{dim} N \otimes V \leq \operatorname{dim} V$.

3.4. Application to orbit equivalence.

Notation. Let $\alpha: \Gamma \curvearrowright(X, \mu)$ be a probability measure preserving essentially free action. Put $A=L^{\infty}(X, \mu), M=L \Gamma, N=L^{\infty}(X, \mu) \rtimes \Gamma=\mathrm{vN}\left(\mathscr{R}_{\Gamma \curvearrowright X}\right)$. Let R_{0} denote the linear span $\operatorname{alg}\left(L^{\infty}(X, \mu), \Gamma\right)$ of $f \lambda(s)$ for the $f \in A, s \in \Gamma$. Let R denote the linear span $\operatorname{alg}(N(A))$ of $f v_{\phi}$ for the $f \in A, \phi \in[[\mathscr{R}]]$.

Remark 3.31. R_{0} is free over $\mathbb{C} \Gamma$ and $\mathbb{R}_{0} \otimes_{\mathbb{C} \Gamma} \mathbb{C} \simeq L^{\infty}(X)$. The induced left $R_{0^{-}}$ structure on $L^{\infty}(X)$ is given by $\left.\sum f_{s} \lambda_{s}\right) \cdot g=\sum f_{s} \alpha_{s}(g)$ thus $R_{0} \otimes_{\mathbb{C} \Gamma}^{\mathbb{C}} \simeq A$ and we have $\operatorname{Tor}_{*}^{R_{0}}(N, A) \simeq \operatorname{Tor}_{*}^{\mathbb{C}}(N, \mathbb{C})$. The latter is isomorphic to $N \otimes_{M} \operatorname{Tor}_{*}^{\mathbb{C}}(M, \mathbb{C})$ by the flatness of N. Note that $\operatorname{dim}_{N} N \otimes_{M} \operatorname{Tor}_{n}^{\mathbb{C}}(M, \mathbb{C})=\operatorname{dim}_{M} \operatorname{Tor}_{n}^{\mathbb{C}}(M, \mathbb{C})=$ $\beta_{n}^{(2)}(\Gamma)$.

Our goal is to show the equality $\operatorname{dim}_{N} \operatorname{Tor}_{n}^{R_{0}}(N, A)=\operatorname{dim}_{N} \operatorname{Tor}_{n}^{R}(N, A)$. Note that the latter only depends on the orbit equivalence $\mathscr{R}_{\Gamma \curvearrowright}$.
Lemma 3.32. For any $x \in R$ and $\epsilon>0$, there is a projection p in A such that $\tau p>\epsilon$ and $x p^{\perp} \in R_{0}$.

Proof. When x is of the form $v_{\phi} f$, the assertion is trivial by the expression $v_{\phi}=$ $\sum \lambda\left(g_{k}\right) e_{k}$. The general case reduces o the above by $\tau(p \vee q) \leq \tau p+\tau q$.

For the time being let A denote an arbitrary finite von Neumann algebra.
Definition 3.33. Let V be a left A-module. For $\xi \in V$,

$$
[\xi]=\inf \{\tau p: p \in \operatorname{Proj} A, p \xi-\xi\}
$$

is called the rank norm of ξ.
Remark 3.34. [$\xi]$ is subadditive and scalar invariant. $V_{t}=\{\xi:[\xi]=0\}$ is the largest submodule with $\operatorname{dim}_{A} V_{t}=0$. Any A-module homomorphism $\phi: V \rightarrow W$ contracts [$\xi]$. Moreover for any $\eta \in \operatorname{ker} \phi$ and $\epsilon>0$, there is an element $\xi \eta \in \phi^{-1} \eta$ such that $[\xi] \leq[\eta]+\epsilon$.

Definition 3.35. Let V be an A-module. Consider a metric on V defined by $d(\xi, \eta)=[\xi-\eta]$. Let $C(V)$ denote the completion of V with respect to d.

Remark 3.36. $C(V)$ admits an left action of A : the continuity with respect to d follows from $[a \xi] \leq \min [a],[\xi]: p \xi=\xi$ implies

$$
a p \xi=l(a p) a p \xi-l(a p) a \xi \Rightarrow[a \xi] \leq \tau(l(a p))=\tau(r(a p))
$$

$\mathrm{C}(\mathrm{V})$ contains V / V_{t} as a dense subspace.
Remark 3.37. $V \subset W$ is dense if and only if for any $\xi \in W$ and $\epsilon>0$, there exists $p \in A$ such that $\tau p<\epsilon$ such that $p^{\perp} \xi \in V$, which, in turn, happens if and only if $\operatorname{dim} W / V=0$.

Lemma 3.38. The functor $V \mapsto C V$ is exact.
Proof. Right exactness: consider an exact sequence $V_{1} \rightarrow V_{0} \rightarrow 0$. Let $\xi \in C V_{0}$, $\left(\xi_{n}\right)_{n \in \mathbb{N}} \subset V_{0}$ a sequence convergent to ξ. We may assume that $d\left(\xi, \xi_{n}\right) \leq 2^{-(n+1)}$. We can inductively lift $\left(\xi_{n}\right)$ to $\left(\eta_{n}\right)$ in V_{1} such that $d\left(\eta_{n}, \eta_{n+1} \leq 2^{-n}\right.$.

General exactness: let

$$
V_{2} \longrightarrow V_{1} \longrightarrow V_{0}
$$

be an exact sequence, ξ an element of $\operatorname{ker} C(f)$. Choose a sequence $\left(\xi_{n}\right)_{n}$ convergent to ξ. Then $f\left(\xi_{n}\right) \rightarrow C(f)(\xi)=0$. This implies the existence of a sequence $\left(\eta_{n}\right)_{n}$, convergent to 0 and $f \eta_{n}=f \xi_{n} . \xi=\lim \xi_{n}-\eta n$ is in the closure of the image of g, which, by the right exactness of C, is equal to the image of $C(g)$.

Now we turn to the orbit equivalence situation: $A \subset R_{0} \subset R \subset N$. We consider A-rank metric on R_{0}-modules.

Lemma 3.39. When V is an R_{0} (resp. R) module, $C V$ admits an R_{0} (resp. R) module structure.

Proof. If $x-\sum_{n=1}^{N} v_{\phi_{n}} f_{n}$, for any $\xi \in V$ we have the estimate $[x \xi] \leq n[\xi]$.

Lemma 3.40. When V is an R_{0} module, $C V$ admits an R-module structure.

Proof. Let $x \in R,\left(x_{n}\right)_{n}$ be a sequence in R_{0} convergent to x. For any $\xi \in V, x_{n} \xi$ is A-rank convergent to $x \xi$.

Lemma 3.41. When V is a left R_{0}-module. $N \otimes_{R_{0}} V \rightarrow N \otimes_{R_{0}} C V$ is a dimension isomorphism.

Proof. Suppose $x=\sum a_{i} \otimes \xi_{i}\left(a_{i} \in N, \xi_{i} \in V\right)$ represents 0 in $N \otimes_{R_{0}} C V$. In the tensor product over \mathbb{C},

$$
\sum a_{i} \otimes \xi_{i}=\sum\left(b_{j} v_{j} \otimes \eta_{j}-b_{j} \otimes v_{j} \eta_{j}\right)
$$

for $b_{j} \in N, v_{j} \in R_{0}, \eta_{j} \in C V$. For each j, there is a projection p_{j} such that $\tau\left(p_{j}\right) \sim 0$ and $p_{j}^{\perp} \eta_{j} \in V$. Thus we get a representative of x given by

$$
\sum\left(b_{j} v_{j} \otimes p_{j} \eta_{j}-b_{j} \otimes v_{j} p_{j} \eta_{j}\right)+\sum\left(b_{j} v_{j} \otimes p_{j}^{\perp} \eta_{j}-b_{j} \otimes v_{j} p_{j}^{\perp} \eta_{j}\right)
$$

The second summand becomes 0 in $N \otimes_{R_{0}} V$. Now, choose the smallest projection p in N such that $p v_{j} p_{j}=v_{j} p_{j}, p_{j} \leq p$. Then $x=(1 \otimes p) x$ and $[x]_{N} \sim 0$. Hence $N \otimes V \rightarrow N \otimes C V$ is an isometry. When $\xi_{n} \in V$ converges to $\xi \in C V, a \otimes \xi_{n}$ converges to $a \otimes \xi$ in $[-]_{N}$.

Remark 3.42. For any R-module $W, N \otimes_{R_{0}} W \rightarrow N \otimes_{R} W$ is an dim_{N}-isomorphism.

Theorem 3.43. $\operatorname{dim}_{N} \operatorname{Tor}_{n}^{R_{0}}(N, A)=\operatorname{dim}_{N} \operatorname{Tor}_{n}^{R}(N, A)$.

Proof. Consider projective resolutions of $A: P_{*} \rightarrow A$ as an R_{0}-module, $Q_{*} \rightarrow A$ as an R-module. We have morphisms $\phi_{*}: P_{*} \rightarrow Q_{*}$ and $\psi_{*}: Q_{*} \rightarrow C P_{*}$. Thus we get a commutative diagram

By the uniqueness of projective resolution up to homotopy, compositions of two homomorphisms $\psi_{n} \phi_{n}$ and $C \phi_{n} \psi_{n}$ are homotope to the the standard inclusion isomorphisms.

Now, the standard inclusion $P_{*} \rightarrow C P_{*}$ induces a dim_{N}-isomorphism after applying the $N \otimes_{R_{0}}$ - functor by Lemma 3.41. Thus, $\operatorname{Id}_{N} \otimes \phi_{*}$: and $\operatorname{Id}_{N} \otimes \psi_{*}$ are inverse to each other via the identification of $N \otimes P_{*} \simeq N \otimes C P_{*}$ and $N \otimes Q_{*} \simeq N \otimes C Q_{*}$. Hence $\operatorname{Id}_{N} \otimes \phi_{*}$ induces a dimension isomorphism on cohomology groups.

Corollary 3.44. Let $\Gamma \curvearrowright(X, \mu)$ and $\Lambda \curvearrowright(Y, \nu)$ be essentially free probability measure preserving actions. If $\mathscr{R}_{\Gamma \curvearrowright X} \simeq \mathscr{R}_{\Lambda \curvearrowright Y}, \beta_{n}^{(2)}(\Gamma)=\beta_{n}^{(2)}(\Lambda)$.

Remark 3.45. Put $\beta_{*}^{2}(A, N)=\operatorname{dim}_{N} \operatorname{Tor}_{*}^{R}(N, A)$. For any nonzero projection p in $A, \beta_{*}^{2}(A, N)=\tau(p) \beta_{*}^{2}(p A, p N p)$.

4. Derivations on von Neumann algebras

In the following we only consider normal Hilbert (bi)modules over von Neumann algebras. Examples of such modules include the identity bimodule $L^{2} N$ and the coarse (M, N)-module $L^{2} M \otimes L^{2} N$.

Let Γ be a countable discrete group, $\left(\pi, H_{0}\right)$ a unitary representation of Γ. A map $b: \Gamma \rightarrow H_{0}$ is said to be a derivation when it satisfies $b(s t)=b(s)+\pi(s) b(t)$ i. e. a derivation for the (π, triv)-bimodule structure. A derivation b is said to be inner when there exists $\xi \in H_{0}$ such that $b(s)=\pi(s) \xi-\xi$. Put

$$
H^{1}(\Gamma, \pi)=\{\text { derivations }\} /\{\text { inner derivations }\}
$$

When b is a derivation, $\phi_{r}(s)=e^{-r\|b(s)\|^{2}}$ for $r \geq 0$ determines a positive semidefinite semigroup. Our goal is to show that it extends to a semigroup $\tilde{\phi}_{r}: L \Gamma \rightarrow L \Gamma$ of τ preserving completely positive maps.
4.1. Densely defined derivations. Let M denote $L^{2} \Gamma$. Consider $H=M \otimes H_{0}$. A left action $M \rightarrow B(H)$ is defined by $\lambda(f) \mapsto \lambda \otimes \pi(f)$ (this is possible by the Fell absorption.) On the other hand we have a right action $M^{o} \rightarrow B(H)$ is defined by $\rho(g) \mapsto \rho(g) \otimes i d$. Put $\delta(s)=\delta_{s} \otimes b(s) \in \ell_{2} \Gamma \bar{\otimes} H_{0}$. By

$$
\delta(s t)=\delta_{s t} \otimes(b(s)+\pi(s) b(t))=\rho \otimes 1\left(t^{-1}\right) \delta(s)+\lambda \otimes \pi(s) \delta(t)
$$

δ extends to a (possibly unbounded) derivation $\mathbb{C} \Gamma \rightarrow H$ satisfying $\delta(x y)=x \delta(y)+$ $\delta(x) y$.
Notation. Let (M, τ) be a finite von Neumann algebra with a faithful normal tracial state, \mathscr{D} a weak*-dense $*$-subalgebra of M. Let H be a Hilbert bimodule over $M, \delta: M \rightarrow H$ a derivation defined on \mathscr{D} which is closable as a densely defined operator $L^{2} M \rightarrow H$. Let $\bar{\delta}$ denote its closure.

We are going to show that the domain of $\bar{\delta}$ is a $*$-subalgebra of $\mathscr{L}(H)$ and that $\bar{\delta}$ is a derivation.

Notation. Let $\|-\|_{\text {Lip }}$ denote the 1-Lipschitz norm:

$$
\|f\|_{\text {Lip }}=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|}
$$

Let Lip_{0} denote the space of 1-Lipschitz continuous functions which map 0 to 0 .

For any $x \in L^{2} M_{s a}$, regarded as a self adjoint unbounded operator on $L^{2} M$, we can consider its functional calculus $f(x)$.

Proposition 4.1. When $x, y \in L^{2} M_{s a}$ and $f \in \operatorname{Lip}_{0}$, the functional calculus $f(x), f(y)$ is in $L^{2} M$ and

$$
\|f(x)-f(y)\|_{2} \leq\|f\|_{\text {Lip }}\|x-y\|_{2} .
$$

Proof. For the spectral measure $E(t)$ of $x, x=\int t d E(t)$ and $\|x\|_{2}^{2}=\int|x|^{2} d \tau E(T)$. Thus $\|f(x)\|_{2}^{2}=\int|f(t)|^{2} d \tau E(t) \leq\|f\|_{\text {Lip }} \int|t|^{2} d \tau E(t)$ and $f(x)$ is in $L^{2} M$. For the second assertion, consider the bilinear map

$$
C_{0}(\mathbb{R})^{2} \ni(f, g) \mapsto \tau(f(x) g(x))=\langle f(x) \hat{1} f(y), \hat{1}\rangle
$$

This defines a linear form $C_{0}(\mathbb{R} \times \mathbb{R}) \rightarrow \mathbb{C}$, i.e. $\tau(f(x) g(y))=\int f g d \mu$ for some measure μ on $\mathbb{R} \times \mathbb{R}$. Thus, $\tau\left(|f(x)-f(y)|^{2}\right)$ is equal to

$$
\int|f(s)-f(t)|^{2} d \mu(s, t) \leq\|f\|_{\text {Lip }}^{2} \int|s-t|^{2} d \mu(s, t)=\|f\|_{\text {Lip }}^{2}\|x-y\|_{2}^{2}
$$

Definition 4.2. Let I be a bounded closed interval in $\mathbb{R}, f \in C^{1}(I)$. The function

$$
\tilde{f}(x, y)= \begin{cases}\frac{f(x)-f(y)}{x-y} & (x \neq y) \\ f^{\prime}(x) & (x=y)\end{cases}
$$

is called the difference quotient of f.
Note that $\|\tilde{f}\|_{\infty}=\left\|f^{\prime}\right\|_{\infty}$. When $a \in M_{s a}$ and $[-\|a\|,\|a\|] \subset I$, we have $\pi_{a}: C(I \times I) \rightarrow B(H)$ by $\pi_{a}(f \otimes g) \xi=f(a) \xi g(a)$.

Lemma 4.3. For any $a \in \mathscr{D}$ and $f \in C^{1}(I)$, the operator $f(a)$ is in dom $\bar{\delta}$ and $\bar{\delta}(f(a))=\pi_{a}(\tilde{f}) \delta(a)$.

Proof. The assertion is obvious for polynomial functions. The equality for the general C^{1}-functions follows from it because it is compatible with the C^{1}-norm.

Remark 4.4. When T is a closed operator on $H, x_{n} \rightarrow x(n \rightarrow \infty)$ in H and $\sup _{n}\left\|T x_{n}\right\|<\infty$ imply that $x \in \operatorname{dom} T$ and that $T x \in \bigcap_{m=0}^{\infty} \overline{\operatorname{conv}}\left\{T x_{n}: n \geq m\right\}$, where $\overline{\text { conv }}$ denotes the closed convex span. This is because, taking a suitable subsequence if necessary, we may assume that the bounded sequence $T x_{n}$ is weakly convergent to some y. Taking the convex closure, we can find a sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ such that $T z_{n} \rightarrow y$ in norm and that z_{n} is in the algebraic convex closure of $\left\{x_{k}: k \geq n\right\}$. By construction, $\left(z_{n}\right)_{n \in \mathbb{N}}$ converges to x.

Lemma 4.5. Let x be an unbounded self adjoint operator on $L^{2} M$ which is in $\operatorname{dom} \bar{\delta}, f \in \operatorname{Lip}_{0}$. Then $f(x) \in \operatorname{dom} \bar{\delta}$ and $\|\bar{\delta}(f(x))\| \leq\|f\|_{\text {Lip }}\|\bar{\delta}(x)\|$.

Proof. Choose a mollifier $\left(\phi_{n}\right)_{n}$ and set $f_{n}=f * \phi_{n}$. Thus f_{n} is of C^{1} class and $f_{n} \rightarrow f$ uniformly on I. By

$$
\left|f_{n}(y)-f_{n}(z)\right|=\int|f(y-r)-f(z-r)| \phi_{n}(r) d r \leq\|f\|_{\text {Lip }}|y-z|
$$

we have $\left\|f_{n}\right\|_{\text {Lip }} \leq\|f\|_{\text {Lip }}$. Now take a sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ in $\mathscr{D}_{s a}$ which is convergent to x in $\|-\|_{2}$-norm. Then

$$
\left\|\bar{\delta}\left(f_{n}(a)\right)\right\|=\left\|\pi_{a}\left(\tilde{f}_{n}\right) \delta(a)\right\| \leq\left\|f_{n}\right\|_{\text {Lip }}\|\delta a\| .
$$

This shows $f(x) \in \operatorname{dom} \bar{\delta}$.
Definition 4.6. A derivation $\delta: M \rightarrow H$ is said to be real when we have

$$
\langle\delta(x), \delta(y) z\rangle=\left\langle z^{*} \delta\left(y^{*}, x^{*}\right\rangle\right.
$$

for any $x, y, z \in M$.
Remark 4.7. We summarize a few properties of real derivations.

- When M is the group von Neumann algebra $L \Gamma$ of a group Γ, the above condition is equivalent to $\langle\delta(s), \delta(t)\rangle \in \mathbb{R}$.
- In general, when we have a J-operator, δ is real if and only if $J x \delta(y) z=$ $z^{*} \delta\left(y^{*}\right) x^{*}$, since, by definition, $\langle\delta(x), \delta(y) z\rangle$ is equal to $\left\langle z^{*} J \delta(y), J \delta(x)\right\rangle$.
- When δ is real, dom $\bar{\delta}$ is self adjoint.

Let $\overline{\mathscr{D}}$ denote dom $\bar{\delta}$.
Lemma 4.8. Let δ be a real derivation. When $x \in \overline{\mathscr{D}},|x|$ is also in $\overline{\mathscr{D}}$ and $M \cap \overline{\mathscr{D}}$ is a ${ }^{*}$-subalgebra of M.

Proof. Consider the linear map $\delta^{(2)}: M_{2} \mathscr{D} \rightarrow M_{2} H \simeq H^{\oplus 4}$. Then $\delta^{\overline{(2)}}=\bar{\delta}^{(2)}$ and for any $z \in \overline{\mathscr{D}}$,

$$
w=\left[\begin{array}{cc}
0 & z^{*} \\
z & 0
\end{array}\right] \in \operatorname{dom} \delta^{\overline{(2)}} \Rightarrow w^{2}=\left[\begin{array}{cc}
|z|^{2} & 0 \\
0 & \left|z^{*}\right|^{2}
\end{array}\right] \in \operatorname{dom} \delta^{\overline{(2)}}
$$

Thus $|z|^{2}$ is in \mathscr{D}.
Let $x, y \in \overline{\mathscr{D}}$. The polarization

$$
x^{*} y=\frac{1}{4} \sum i^{k}\left|x+i^{k} y\right|
$$

shows $x^{*} y \in \overline{\mathscr{D}}$, and in particular $x^{*} \in \overline{\mathscr{D}}$ follows from $1 \in \mathscr{D}$.
Lemma 4.9. For any $x \in \overline{\mathscr{D}} \cap M_{\text {sa }}$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in $\mathscr{D}_{\text {sa }}$ such that

$$
\left\|x_{n}-x\right\|_{2} \rightarrow 0,\left\|\delta\left(x_{n}\right)-\bar{\delta}(x)\right\| \rightarrow 0 \text { and }\|x\|_{\infty} \leq\|x\|_{\infty}
$$

In particular, $x_{n} \rightarrow x$ in the ultrastrong topology.
Proof. The only nontrivial part is the last inequality. This is achieved by the functional calculus with respect to the function

$$
f(t)= \begin{cases}\|x\|_{\infty} & \left(\|x\|_{\infty}<t\right) \\ t & \left(|t| \leq\|x\|_{\infty}\right) \\ -\|x\|_{\infty} & \left(t<-\|x\|_{\infty}\right)\end{cases}
$$

Theorem 4.10. The restriction of $\bar{\delta}$ to $\overline{\mathscr{D}} \cap M$ is a derivation.
Proof. Let $x \in \overline{\mathscr{D}} \cap M$. Choose a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{D} weakly convergent to x and $\delta\left(x_{n}\right) \rightarrow \bar{\delta}(x)$. For each $y \in \mathscr{D} \cap M$, we have $x_{n} y \rightarrow x y$ in the $\|-\|_{2}$-norm. Since y is bounded, we have $\delta\left(x_{n}\right) y \rightarrow \bar{\delta} y$. On the other hand, the representation of M on H is normal, which implies $x_{n} \delta(y) \rightarrow x \delta(y)$. Thus we have $\bar{\delta}(x y)=x \delta(y)+\bar{\delta}(x) y$. Similar approximation in y shows that $\bar{\delta}(x y)=x \bar{\delta}(y)+\bar{\delta}(x) y$. for any $y \in \overline{\mathscr{D}} \cap M$.
4.2. Semigroup associated to a derivation. In the following we assume $M \cap$ $\overline{\mathscr{D}}=\mathscr{D}$. Put $\Delta=\delta^{*} \bar{\delta}$. This is a positive self adjoint operator on $L^{2} M$ satisfying $\Delta \hat{1}=\hat{1}$ and commutes with the J operator so that we have " $\Delta\left(x^{*}\right)=(\Delta x)^{*}$." Put $\phi_{t}=e^{-t \Delta}$. This is a semigroup of positive contractions satisfying $\phi_{t} \hat{1}=\hat{1}$ and $\phi_{t} \nearrow \mathrm{Id}$ as $t \searrow 0$. The normalized resolvents

$$
\eta_{\alpha}=\frac{\alpha}{\alpha+\Delta}
$$

for $\alpha>0$ are again positive contractions on $L^{2} M$ satisfying $\eta_{\alpha} \nearrow \operatorname{Id}$ as $\alpha \nearrow \infty$. These operators are related to each other as follows:

$$
\underset{\uparrow}{\Delta \underset{\text { derivation }}{\stackrel{\text { exponential }}{\gtrless}} \phi_{t} \xrightarrow{\text { Laplace trans. }} \eta_{\alpha}}
$$

where the Laplace transform is given by

$$
\eta_{\alpha}=\alpha \int_{0}^{\infty} e^{-\alpha t} \phi_{t} d t=\int_{0}^{\infty} e^{-t} \phi_{\frac{t}{\alpha}} d t .
$$

Recall that any unital completely positive map $\phi: M \rightarrow M$ is expressed as $V^{*} \pi(x) V$ for some representation $\pi: M \rightarrow B(K)$ and an isometry $V: L^{2} M \rightarrow K$ (Steinespring's theorem). When ϕ is normal, π can be taken as a normal representation (we may take the normal part of a possibly non-normal π given by Steinespring's theorem). Thus,
(1) For any $x \in M, \phi\left(x^{*} x\right)-\phi\left(x^{*}\right) \phi(x)=V^{*} \pi x^{*}\left(1-V V^{*}\right) \pi x V \geq 0$. When ϕ preserves $\tau,\|\phi(x)\|_{2} \leq\|x\|$.
(2) When ϕ preserves $\tau,\left\|\phi\left(x^{*} y\right)-\phi\left(x^{*}\right) \phi(y)\right\|_{2}=\left\|V^{*} \pi x\left(1-V V^{*}\right) \pi y V \hat{1}\right\|$ is bounded from above by

$$
\left\|\phi\left(x^{*} x\right)-\phi x^{*} \phi x\right\|_{\infty}^{\frac{1}{2}}\left(\tau\left(\phi\left(y^{*} y\right)-\phi y^{*} \phi y\right)\right)^{\frac{1}{2}} \leq 2\|x\|_{\infty}\|y-\phi(y)\|_{2}
$$

by $\tau\left(\phi\left(y^{*} y\right)-\phi y^{*} \phi y\right)=\|y\|_{2}^{2}-\|\phi y\|_{2}^{2}$, etc.
Fact. Consider the 1-norm $\|x\|_{1}=\sup \left\{|\tau(x y)|:\|y\|_{\infty} \leq 1\right\}$ for $x \in M . x \in$ $L^{2} M$ is in M if and only if $\sup \left\{|\tau(x y)|:\|y\|_{1} \leq 1, x y \in M\right\}$ is finite.
Theorem 4.11. (Sauvageot, [1?) The contractions ϕ_{t} and η_{α} map M into M, are unital completely positive and τ-symmetric, i. e. $\tau\left(\phi_{t}(x) y\right)=\tau\left(x \phi_{t}(y)\right)$ etc.

Proof. Observe that $\phi_{t}^{(n)}=e^{-t \Delta^{(n)}}$ where $\Delta^{(n)}=\delta^{(n) *} \overline{\delta^{(n)}}$ for $\delta^{(n)}: M_{n} \mathscr{D} \rightarrow M_{n} H$. Thus, it is enough to show that the maps are positive to conclude that they are actually completely positive. Put

$$
\Delta_{\alpha}=\frac{\alpha \Delta}{\alpha+\Delta}=\alpha\left(1-\eta_{\alpha}\right)
$$

Then

$$
\phi_{t}=e^{-t \Delta} e=\lim _{\alpha \nearrow \infty} e^{-t \Delta_{\alpha}}=\lim _{\alpha \nearrow \infty} e^{-t \alpha} \sum_{n=0}^{\infty} \frac{t \alpha \eta_{\alpha}}{n!}
$$

where the limit is taken in the strong operator topology (note: this might be the norm topology, as we are using c_{0} functions converging from below). The last expression is compatible with the $x \mapsto \tau(x y)\left(\|y\|_{1} \leq 1\right)$ functionals. Thus it reduces to show that η_{α} restricts to a positive map on M.

By scaling δ, we may assume that $\alpha=1$. Let $x \in M_{+}$and put $y=(1+\Delta)^{-1} x \in$ $\operatorname{dom} \Delta$. We have

$$
\|\delta y\|^{2}+\|y\|_{2}^{2}=\langle y, \Delta y\rangle+\langle y, y\rangle=\langle y, x\rangle
$$

Then the function $\Phi(z)=\|\bar{\delta}(z)\|^{2}+\|z-x\|_{2}^{2}$ for $z \in \overline{\mathscr{D}}_{s a}$ satisfies

$$
\begin{aligned}
\|\bar{\delta}(z-y)\|^{2}+\|z-y\|_{2}^{2}= & \|\bar{\delta}(z)\|^{2}-2\langle z, \Delta y\rangle+\|\bar{\delta}(y)\|^{2}+\|z\|^{2}-2\langle z, y\rangle+\|y\|^{2} \\
= & \|\bar{\delta}(z)\|^{2}+\|z\|^{2}-2\langle z, x\rangle+\|x\|^{2} \\
& -\left(\|\bar{\delta}(y)\|^{2}+\|y\|^{2}-2\langle y, x\rangle+\|x\|^{2}\right) \\
= & \Psi(z)-\Psi(y) .
\end{aligned}
$$

Consider a function

$$
f(t)= \begin{cases}\|x\|_{\infty} & \left(\|x\|_{\infty}<t\right) \\ t & \left(0 \leq t \leq\|x\|_{\infty}\right) \\ 0 & (t<0)\end{cases}
$$

of Lip_{0} class with $\|f\|_{\text {Lip }}=1$. Then

$$
\Psi(f(z))=\|\bar{\delta}(f(z))\|^{2}+\|f(z)-f(x)\| \leq \Psi(z)
$$

Take a sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ in $\mathscr{D}_{s a}$ with $\left\|z_{n}-y\right\|_{2} \rightarrow 0$ and $\left\|\delta z_{n}-\bar{\delta} y\right\| \rightarrow 0$. Then we have

$$
\left\|f z_{n}-y\right\|_{2}^{2} \leq \Psi\left(f z_{n}\right)-\Psi(y) \leq \Psi\left(z_{n}\right)-\Psi(y) \rightarrow 0
$$

Thus $y=\lim f z_{n}$ and $0 \leq y \leq\|x\|$ and η_{1} is shown to be unital positive.
Let B be a von Neumann subalgebra of M. Then we are interested in "when ϕ_{t} converges uniformly on B_{1} ?" Roughly, this means " δ is inner on B."

Lemma 4.12. Let $\Omega \subset M_{1}$. Then $\phi_{t} \rightarrow$ id uniformly on Ω as $t \rightarrow 0$ if and only if $\eta_{\alpha} \rightarrow$ id uniformly on Ω as $\alpha \rightarrow \infty$.

Proof. \Rightarrow : We have

$$
\left\|x-\eta_{\alpha} x\right\|_{2} \leq \int_{0}^{\infty} e^{-s}\left\|x-\phi_{\frac{s}{a}}(x)\right\|_{2} d s
$$

but $\left\|x-\phi_{\frac{s}{a}}(x)\right\|_{2}$ does not exceed 2 .
\Leftarrow : Suppose ϕ_{s} did not converge uniformly on Ω. Then there is a constant c such that for any t there exists an element x_{t} of Ω satisfying $\left\langle x_{t}-\phi_{t} x_{t}, x_{t}\right\rangle \geq c$.

Then

$$
\begin{aligned}
\left\langle x_{t}-\eta_{\frac{1}{t}} x_{t}, x_{t}\right\rangle & =\int_{0}^{\infty} e^{-s}\left\langle x_{t}-\phi_{s t} x_{t}, x_{t}\right\rangle d s \\
& \geq \int_{0}^{1} e^{-s}\left\langle x_{t}-\phi_{t}\left(x_{t}\right), x_{t}\right\rangle d s \\
& \geq c\left(1-e^{-1}\right)
\end{aligned}
$$

and η_{α} is not uniformly convergent on Ω.
Lemma 4.13. For the latter convenience we record the following equalities:
(1) In $B\left(L^{2} M\right)$,

$$
\eta_{\alpha}^{\frac{1}{2}}=\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{-\frac{1}{2}}}{1+t} \eta_{\frac{\alpha(1+t)}{t}} d t
$$

(2) In $B\left(L^{2} M\right)$,

$$
\left(\operatorname{Id}-\eta_{\alpha}\right)^{\frac{1}{2}}=\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{-\frac{1}{2}}}{1+t}\left(1-\eta_{\frac{\alpha(1+t)}{t}}\right) d t=\operatorname{Id}-\theta_{\alpha}
$$

where θ_{α} restricts to a unital completely positive map on M.
(3) $\psi_{t}=e^{-t \Delta^{\frac{1}{2}}}$ is τ-symmetric and unital completely positive on M.

Proof. (1): we have

$$
s^{\frac{1}{2}}=\frac{1}{\pi} \int_{0}^{\infty} \frac{s}{s+t} t^{-\frac{1}{2}} d t \Rightarrow \eta_{\alpha}^{\frac{1}{2}}=\frac{1}{\pi} \int_{0}^{\infty} \frac{\eta_{\alpha}}{t+\eta_{\alpha}} t^{-\frac{1}{2}} d t
$$

On the other hand,

$$
\frac{\eta_{\alpha}}{t+\eta_{\alpha}}=\frac{\alpha}{\alpha(1+t)+t \Delta}=\frac{1}{1+t} \eta_{\frac{\alpha(1+t)}{t}} .
$$

(3): We have $\Delta_{\alpha}^{\frac{1}{2}}=\alpha^{\frac{1}{2}}\left(\operatorname{Id}-\eta_{\alpha}\right)^{\frac{1}{2}}=\alpha^{\frac{1}{2}}\left(\operatorname{Id}-\theta_{\alpha}\right)$. Thus ψ_{t} can be written as

$$
\lim _{\alpha \rightarrow \infty} e^{-t \Delta_{\alpha}^{\frac{1}{2}}}=\lim _{\alpha \rightarrow \infty} e^{-\alpha^{\frac{1}{2}} t} e^{t \alpha^{\frac{1}{2}} \theta_{\alpha}}
$$

Lemma 4.14. For $x, y \in \mathscr{D}$, put $\Gamma\left(x^{*}, y\right)=\Delta^{\frac{1}{2}}\left(x^{*}\right) y+x^{*} \Delta^{\frac{1}{2}}(y)-\delta^{\frac{1}{2}}\left(x^{*} y\right)$. Then we have

$$
\left\|\Gamma\left(x^{*}, y\right)\right\|_{2} \leq 4\|\delta(x)\|\|x\|_{\infty}\|\delta(y)\|\|y\|_{\infty}
$$

Proof. First we have

$$
\Gamma\left(x^{*}, y\right)=\left.\frac{d}{d t}\left(\psi_{t}\left(x^{*} y\right)-\psi_{t}\left(x^{*}\right) \psi_{t}(y)\right)\right|_{t=0}
$$

Note that $\left\|\psi_{t} x\right\| \leq\|x\|$. Define a sesquilinear form on $\mathscr{D} \otimes M$ by $\langle y \otimes b, x \otimes a\rangle=$ $\tau\left(a^{*} \Gamma\left(x^{*}, y\right) b\right)$. This is positive semidefinite by

$$
\left\langle\sum x_{i} \otimes a_{i}, \sum x_{i} \otimes a_{i}\right\rangle=\lim _{t \rightarrow 0} \tau\left(\sum a_{i} \frac{\psi_{t}\left(x_{i}^{*} x_{j}\right)-\psi_{t} x_{i}^{*} \psi_{t}\left(x_{j}\right)}{t} a_{j}\right) \leq 0
$$

For $z=v|z| \in M$, we have
$\left.\left.\left.\left|\tau\left(\Gamma\left(x^{*}, y\right) z\right)\right|=|\langle y \otimes v| z|^{\frac{1}{2}}, x \otimes|z|^{\frac{1}{2}}\right\rangle \mid \leq\left.\langle y \otimes v| z\right|^{\frac{1}{2}}, y \otimes v|z|^{\frac{1}{2}}\right\rangle\left.^{\frac{1}{2}}\langle x \otimes| z\right|^{\frac{1}{2}}, x \otimes|z|^{\frac{1}{2}}\right\rangle^{\frac{1}{2}}$.

Here, $\langle x \otimes a, x \otimes a\rangle \leq\left\|a a^{*}\right\|_{2}\left\|\Gamma\left(x^{*}, x\right)\right\|_{2}$ and

$$
\begin{aligned}
\left\|\Gamma\left(x^{*}, x\right)\right\| & \leq\left\|\Delta^{\frac{1}{2}} x^{*}\right\|_{2}\|x\|_{\infty}+\left\|x^{*}\right\|_{\infty}\left\|\Delta^{\frac{1}{2}} x\right\|_{2}+\left\|\Delta^{\frac{1}{2}}\left(x^{*} x\right)\right\|_{2} \\
& \leq 4\|\delta(x)\|\|x\|_{\infty}
\end{aligned}
$$

(Here we used the fact that $\left\|\Delta^{\frac{1}{2}}\left(x^{*} x\right)\right\|_{2}=\left\|\delta\left(x^{*}\right) x+x^{*} \delta(x)\right\|$.) Hence we arrive at

$$
\left|\tau\left(\Gamma\left(x^{*}, y\right) z\right)\right|^{2} \leq\left\|\Gamma\left(x^{*}, x\right)\right\|_{2}\|z\|_{2}\left\|\left(y^{*}, y\right)\right\|\|z\|_{2}
$$

thus $\left\|\Gamma\left(x^{*}, y\right)\right\|^{2} \leq\left\|\Gamma\left(x^{*}, x\right)\right\|_{2} 2\left\|\left(y^{*}, y\right)\right\|$.
Put $\zeta_{\alpha}=\eta_{\alpha}^{\frac{1}{2}} . \quad \Delta^{\frac{1}{2}} \zeta_{\alpha}=\Delta_{\alpha}^{\frac{1}{2}}=\left(\operatorname{Id}-\eta_{\alpha}\right)^{\frac{1}{2}}$ (hence bounded) and $\left\|\Delta_{\alpha}^{\frac{1}{2}} x\right\|_{2}^{2}=$ $\alpha\left\langle\left(\operatorname{Id}-\eta_{\alpha}\right) x, x\right\rangle$. Put $\tilde{\delta}_{\alpha}=\alpha^{\frac{1}{2}} \delta \zeta_{\alpha}$. Thus $\left\|\tilde{\delta}_{\alpha}(x)\right\|=\left\langle\left(\operatorname{Id}-\eta_{\alpha}\right) x, x\right\rangle$ and $\|\delta\|_{\alpha}(x) \rightarrow$ 0 if and only if $\left\|x-\eta_{\alpha} x\right\|_{2} \rightarrow 0$.

Theorem 4.15. (Peterson?) Let $\Omega \subset M_{1}$ and suppose $\eta_{\alpha} \rightarrow$ Id uniformly on Ω. Then we have $\left\|\tilde{\delta}_{\alpha}(a x)-\zeta_{\alpha}(a) \tilde{\delta}_{\alpha}(x)\right\| \rightarrow 0(\alpha \rightarrow \infty)$ uniformly for $a \in \Omega$ and $x \in M_{1}$.

Proof. By assumption ζ_{α} and θ_{α} converge uniformly to Id on Ω, by e.g. .

$$
\theta_{\alpha}=\frac{1}{\pi} \int_{0}^{\infty} \frac{t^{\frac{1}{2}}}{1+t} \eta_{\frac{\alpha t}{1+t}} d t
$$

In particular, $\theta_{\alpha}(a x) \approx \theta_{\alpha}(a) \theta_{\alpha}(x) \approx a \theta_{\alpha}(x)$ whre \approx means the 2-norm convergence under $\alpha \rightarrow \infty$. Now,

$$
\begin{aligned}
\alpha^{-\frac{1}{2}} \Delta^{\frac{1}{2}} \zeta_{\alpha}(a x) & =\alpha^{-\frac{1}{2}}\left(\operatorname{Id}-\theta_{\alpha}\right)(a x) \approx \alpha^{-\frac{1}{2}} a\left(\operatorname{Id}-\theta_{\alpha}\right)(x) \approx \alpha^{-\frac{1}{2}} \zeta_{\alpha}(a)\left(\operatorname{Id}-\theta_{\alpha}\right)(x) \\
& =\alpha^{-\frac{1}{2}} \zeta_{\alpha}(a) \Delta^{\frac{1}{2}} \zeta_{\alpha}(x) \approx \alpha^{-\frac{1}{2}} \Delta^{\frac{1}{2}}\left(\zeta_{\alpha}(a) \zeta_{\alpha}(x)\right)-\tilde{\delta}_{\alpha}(a) \zeta_{\alpha}(x)
\end{aligned}
$$

where the last approximation is given by applying Lemma 4.14 to get the error estimate

$$
4 \sqrt{\alpha^{-\frac{1}{2}} \| \delta^{\frac{1}{2}}\left(\zeta_{\alpha}(a)\| \| \alpha^{\frac{1}{2}} \delta \zeta_{\alpha} x \|\right.}
$$

Here, $\alpha^{-\frac{1}{2}} \| \delta^{\frac{1}{2}}\left(\zeta_{\alpha}(a) \| \sim 0\right.$ and $\left\|\alpha^{\frac{1}{2}} \delta \zeta_{\alpha} x\right\|$ is bounded by 1 .
Finally we arrive at

$$
\tilde{\delta}_{\alpha}(a x) \approx \alpha^{-\frac{1}{2}} \delta\left(\zeta_{\alpha}(a) \zeta_{\alpha}(x)\right)-\tilde{\delta}_{\alpha}(a) \zeta_{\alpha}(x)=\zeta_{\alpha}(a) \tilde{\delta}_{\alpha}(x)
$$

Theorem 4.16. (Haagerup) Let M be a von Neumann algebra. M is finite injective if and only if for any nonzero central projection p of M, there exist $n \in \mathbb{N}$ and $u_{1}, \ldots, u_{n} \in \mathcal{U}(p M)$ such that $\left\|\sum_{i=1}^{n} u_{i} \otimes u_{i}\right\|_{\infty}=n$.

Proof. (Outline) \Rightarrow : By Connes' theorem, $M \otimes_{\min } \bar{M} \rightarrow B\left(L^{2} M\right)$ can be defined by $(a \otimes b) \cdot \hat{x}=\widehat{a x b^{*}}$. Now, $\left(\sum_{i=1}^{n} u_{i} \otimes \overline{u_{i}}\right) \cdot \hat{1}=n \hat{1}$ when $u_{i} \in \mathcal{U} M$.
\Leftarrow : The minimal tensor product $M \otimes_{\min } \bar{M}$ acts on $H \hat{\otimes} \bar{H}$ i.e. the HilbertSchmidt space of H. For any finite set $F \subset \mathcal{U} M$ containing 1 and $\left\|\sum_{u \in F} u \otimes \bar{u}\right\|=$ $|F|$, there exists $T \in H S(H)$ of 2 -norm $1,\left\|\sum_{u \in F} u T u^{*}\right\| \approx|F|$. Then $u T u^{*} \approx T$. Now, define $\phi_{F}(x)=\operatorname{Tr}\left(T^{*} x T\right)$. Then $\phi_{F}\left(u x u^{*}\right) \approx \phi_{\alpha}(x)$ for $u \in F$. We obtain
an ultrafilter convergence $\phi_{F} \rightarrow \phi \in S(B(H))$ such that $\phi\left(u x u^{*}\right)=\phi(x)$ for any $u \in \mathcal{U} M$. This holds under any central projection, which means M is injective.

Recall that we are investigating closable real derivations on M. Thus, H is an M-bimodule with a J-operator: $J(a \delta(x) b)=b^{*} \delta\left(x^{*}\right) a^{*}$. We have the operators

$$
\eta_{\alpha}=\frac{\alpha}{\alpha+\delta^{*} \bar{\delta}}, \zeta_{\alpha}=\eta_{\alpha}^{\frac{1}{2}}, \tilde{\delta}_{\alpha}=\alpha^{-\frac{1}{2}} \delta \zeta_{\alpha}: M \rightarrow H
$$

As $\alpha \rightarrow \infty$, we have $\left\|\tilde{\delta}_{\alpha}(a)\right\|^{2}=\left\|\left(\operatorname{Id}-\eta_{\alpha}\right)^{\frac{1}{2}} a\right\|_{2}^{2}=\tau\left(\left(a-\eta_{\alpha} a\right) a^{*}\right) \searrow 0$.
Theorem 4.17. Let $(M ; \tau)$ be a finite von Neumann algebra, $H=\left(L^{2} M \otimes\right.$ $\left.L^{2} M\right)^{\oplus \mathbb{N}}$. Suppose $Q \subset M$ is a von Neumann subalgebra without injective summand. Then $\phi_{t} \rightarrow$ Id uniformly on $\left(Q^{\prime} \cap M\right)_{1}$.

Proof. It is enough to show that for any nonzero central projection $p \in Q$, there exists a central projection $q \leq p$ in Q such that $\phi_{t} \rightarrow \operatorname{Id}$ on $q\left(Q^{\prime} \cap M\right)_{1}$. In fact, then by the maximal argument we would get a family $\left(p_{i}\right)_{i \in I}$ of nonzero central projections such that $\sum_{i \in I} p_{i}=1$ and $\phi_{t} \rightarrow \operatorname{Id}$ on $p_{i}\left(Q^{\prime} \cap M\right)_{1}$ for each i. Taking a finite subset $I_{0} \subset I$ such that $\tau\left(\sum_{C_{I_{0}}} p_{i}\right)<\frac{\epsilon}{3}$, we find t_{0} such that $t>t_{0}$ implies $\left\|\phi_{t}(a)-a\right\|_{2}<\frac{\epsilon}{3}$ for $a \in p_{I_{0}}\left(Q^{\prime} \cap M\right)_{1}$. On the other hand, for any $a \in p_{I_{0}}\left(Q^{\prime} \cap M\right)_{1}$ $\tau\left(a-p_{I_{0}} a\right)<\frac{\epsilon}{3}$.

Thus we are going to prove the negation of the above claim leads to that $p Q$ is injective. Let $q \leq p$ be a nonzero central projection in $Q, u_{1}, \ldots, u_{n} \in \mathcal{U}(q Q)$. As ϕ_{t} does not converge uniformly on $q\left(Q^{\prime} \cap M\right)_{1}$, there exists $x_{\alpha} \in q\left(Q^{\prime} \cap M\right)_{1}$ for any α such that liminf $\left\|\tilde{\delta}_{\alpha}\left(x_{\alpha}\right)\right\|>0$.

Applying Theorem 4.15 to the finite subset $\Omega=\left\{u_{1}, \ldots, u_{n}\right\}$ on which ϕ_{t} is uniformly convergent, for any $x \in q\left(Q^{\prime} \cap M\right)$, as $\alpha \rightarrow \infty$,

$$
\sum_{i} \zeta_{\alpha}\left(u_{i}\right) \tilde{\delta}_{\alpha}(x) \zeta_{\alpha}\left(u_{i}^{*}\right) \approx \sum_{i} \tilde{\delta}_{\alpha}\left(u_{i} x u_{i}^{*}\right)=n \tilde{\delta}_{\alpha}(x)
$$

Thus, $\left\|\sum_{i} \zeta_{\alpha}\left(u_{i}\right) \otimes \overline{\zeta_{\alpha}\left(u_{i}\right)}\right\|_{\min } \rightarrow n$ as $\alpha \rightarrow \infty$. On the other hand, since ζ_{α} is a normal unital completely positive map, $\left\|\sum_{i} \zeta_{\alpha}\left(u_{i}\right) \otimes \overline{\zeta_{\alpha}\left(u_{i}\right)}\right\|_{\text {min }}$ is always bounded by $\left\|\sum u_{i} \otimes \overline{u_{i}}\right\|$, which shows that $\left\|\sum u_{i} \otimes \overline{u_{i}}\right\|=n$. Thus we have the injectivity of $p Q$ by Theorem 4.16 .

Remark 4.18. If a 1-cocycle $b: \mathbb{F}_{r} \rightarrow \ell_{2} \mathbb{F}_{r}^{\oplus n}$ satisfies $\|b(s)\|_{2}^{2}=|s|$, we obtain a derivation δ on $\ell_{2} \mathbb{F}_{r} \otimes \ell_{2} \mathbb{F}_{r}^{\oplus n}$ given by $\delta(s)=\delta_{\Delta} \otimes b$ where δ_{Δ} is the "diagonal" operator on $\ell_{2} \mathbb{F}_{r}$ which multiplies the standard base δ_{s} by $|s|$. The semigroup ϕ_{t} associated to this derivation is written as $\phi_{t}(\lambda(s))=e^{-t|s|} \lambda(s)$, thus it is in $\mathbb{K}\left(L^{2} M\right)$.

When B is a von Neumann subalgebra of $L \mathbb{F}_{r}, \phi_{t} \rightarrow$ Id uniformly on B_{1} if and only if B is a direct sum $\oplus M_{n_{i}}$ of finite dimensional algebras.

Corollary 4.19. Let Q be a von Neumann subalgebra of $L \mathbb{F}_{r}$ without injective summand. Then the relative commutant $Q^{\prime} \cap L \mathbb{F}_{r}$ is completely atomic. In particular, $Q \otimes L^{\infty}[0,1] \not \subset L \mathbb{F}_{r}$.

Theorem 4.20. Let $(M ; \tau)$ be a finite von Neumann algebra, $H=\left(L^{2} M \otimes L^{2} M\right)^{\mathbb{N}}$, δ a closable real derivation. If $B \subset M$ is diffuse (i.e. without minimal projection) von Neumann subalgebra such that ϕ_{t} converges to Id uniformly on B_{1}, one has $\phi_{t} \rightarrow$ Id uniformly on $N(B)_{1}^{\prime \prime}$.

Proof. Since B is diffuse, there exists a sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{U} B$ ultraweakly convergent to 0 (e.g. $e^{2 \pi i n t} \in L^{\infty}[0,1]$ for $n \in \mathbb{N}$). For any $u \in \mathcal{N}(B)$,

$$
\begin{aligned}
\left\|\tilde{\delta}_{\alpha}(u)\right\| & \leq \liminf \left\|\tilde{\delta}_{\alpha}(u)-\zeta_{\alpha}\left(v_{n}\right) \tilde{\delta}_{\alpha}(u) \zeta_{\alpha}\left(u^{*} v_{n}^{*} u\right)\right\| \\
& \rightarrow\left\|\tilde{\delta}_{\alpha}(u)-\tilde{\delta}_{\alpha}\left(v_{n} u u^{*} v_{n}^{*} u\right)\right\|=0 \quad(n \rightarrow \infty)
\end{aligned}
$$

The convergence holds uniformly for u. It remains to apply the following lemma to $N(B)=G$.

Lemma 4.21. When $\phi_{t} \rightarrow$ Id uniformly on $G \subset \mathcal{U} M$, we have the uniform convergence $\phi_{t} \rightarrow \mathrm{Id}$ on $G_{1}^{\prime \prime}$.

Proof of the lemma. Let $\phi: M \rightarrow M$ be a τ-symmetric unital completely positive map (hence a contraction). Consider the Stinespring construction on $M \otimes_{\text {alg }} L^{2} M$ by $\langle a \otimes x, b \otimes y\rangle=\left\langle\phi\left(b^{*} a\right) x, y\right\rangle$. This is positive semi definite by the unital completely positivity. The $M-M$-action $a .(c \otimes x) . b=a c \otimes x b$ is bounded and induces an M bimodule structure on the completion.

Now, for $\xi_{0}=1 \otimes \hat{1} \in M \otimes L^{2} M$,

$$
\left\|a \xi_{0}-\xi_{0} a\right\|^{2}=\tau\left(\phi\left(a a^{*}\right)\right)+\tau\left(a a^{*}\right)-2 \Re \tau\left(\phi\left(a a^{*}\right)\right)=2 \tau\left((a-\phi(a)) a^{*}\right)
$$

On the other hand,

$$
\frac{1}{2}\|a-\phi(a)\|_{2}^{2} \leq\left\|a \xi_{0}-\xi_{0} a\right\| \leq 2\|a-\phi(a)\|_{2} \cdot\|a\|_{2}
$$

Thus, if $\|u-\phi(u)\| \leq \epsilon$, we have $\left\|\xi_{0}-u \xi_{0} u^{*}\right\| \leq \sqrt{2 \epsilon}$. By taking the circumcenter of $\left\{u \xi_{0} u^{*}: u \in G\right\}$, we get a G-invariant vector η_{0} satisfying $\left\|\xi_{0}-\eta_{0}\right\| \leq \sqrt{2 \epsilon}$ (this is possible by the Ryll-Nardzewski's fixed point theorem). Thus we obtain $\left\|a \xi_{0}-\xi_{0} a\right\| \leq 2 \sqrt{2 \epsilon}$ for $a \in\left(G^{\prime \prime}\right)_{1}$.

Appendix A. Embeddability of subalgebras

Let $A \subset M$ be an inclusion of finite von Neumann algebras with a trace τ on M. Recall that we have the associated Jones projection $e_{A} \in B\left(L^{2} M\right)$, the orthogonal projection onto $L^{2} A=\overline{A \hat{1}}$ and the basic extension $\langle M, A\rangle$ of M :

$$
\langle M, A\rangle=\mathrm{vN}\left\{M, e_{A}\right\}=\left\{\sum_{\text {finite }} x_{i} e_{A} y_{i}: x_{i}, y_{i} \in M\right\}^{\prime \prime}
$$

and the semifinite trace $\operatorname{Tr}\left(\sum x_{i} e_{A} y_{i}\right)=\sum \tau\left(x_{i} y_{i}\right)$ on $\langle M, A\rangle$.
Theorem A.1. (Popa) Let $A \subset M$ be an inclusion of separable finite von Neumann algebras, p a nonzero projection in $M, B \subset p M p$ a von Neumann subalgebra. The the followings are equivalent:
(1) There are no sequence $\left(w_{n}\right)_{n}$ in $\mathcal{U} B$ such that $\left\|E_{A}\left(y^{*} w_{n} x\right)\right\|_{2} \rightarrow 0$ for any $x, y \in M$.
(2) There exists a nonzero positive element $d \in\langle M, A\rangle$ of finite trace such that $0 \notin \overline{\operatorname{conv}}^{w}\left\{w d w^{*}: w \in \mathcal{U} B\right\}$
(3) There exists a closed nonzero $B-A$ submodule H of $p L^{2} M$ such that $\operatorname{dim}_{A} H_{A}$ is finite.
(4) There exists a projection e in A, another $0 \neq f$ in B and a normal *homomorphism $\theta: f B f \rightarrow e A e$ such that there exists a nonzero partial isometry $v \in M$ satisfying $x v=v \theta(x)$ for any $x \in f B f$, and $v v^{*} \in(f B f)^{\prime} \cap$ $f M f, v^{*} v \in \theta(f B f)^{\prime} \cap e M e$.

Proof. (1) $\Rightarrow(2):$ By assumption there exits a finite set $\mathscr{F} \subset M$ and $\epsilon>0$ such that

$$
\inf _{w \in \mathcal{U} B} \sum_{x, y \in \mathscr{F}}\left\|E_{A}\left(y^{*} w x\right)\right\|_{2}^{2} \geq \epsilon
$$

Now, put $d=\sum_{y \in \mathscr{F}} y e_{A} y^{*} \in\langle M, A\rangle_{+}$. By definition $\operatorname{Tr}(d)<\infty$ and we have

$$
\sum_{x \in \mathscr{F}}\left\langle w^{*} d w \hat{x}, \hat{x}\right\rangle=\sum_{x, y \in \mathscr{F}}\left\langle e_{A} \widehat{y^{*} w x}, \widehat{y^{*} w x}\right\rangle=\sum_{x, y \in \mathscr{F}}\left\|E_{A}\left(y^{*} w x\right)\right\|_{2}^{2} \geq \epsilon
$$

for any $w \in \mathcal{U} B$.
$(2) \Rightarrow(3)$: Let \mathcal{C} denote the closed convex hull of $\left\{w d w^{*}: w \in \mathcal{U} B\right\}$ in $L^{2}\langle M, A\rangle$. We can take the circumcenter d_{0} of \mathcal{C} which is not equal to zero by (2). Then d_{0} is in $B^{\prime} \cap p\langle M, A\rangle p$ and $\operatorname{Tr}\left(d_{0}\right) \leq \operatorname{Tr}(d)<\infty$. Thus we can take a nonzero spectral projection q of d_{0} such that $\operatorname{Tr}(q)<\infty$. Now, $H=q L^{2} M$ is a B - A submodule with $\operatorname{dim}_{A} H_{A}=\operatorname{Tr}(q)$.
(3) \Rightarrow (4): Fact. When H is a $B-A$ module with $\operatorname{dim}_{A} H_{A}<\infty$, there exists a nonzero projection f of B, an $f B f-A$ module $K \subset f H$ such that $K_{A} \hookrightarrow L^{2} A_{A}$ as a right A-module.

Thus, let V denote such an injection $K_{A} \rightarrow L^{2} A_{A}$. When $x \in f B f, V x V^{*} \in$ $\operatorname{End}_{A}\left(L^{2} A_{A}\right)=A$. Thus $\theta(x)=V x V^{*}$ defines a normal $*$-homomorphism (since V is injective) θ of $f B f$ into $e A e$ for $e=V V^{*}$. Put $\xi=V^{*} \hat{1} \in K$. Since $V \xi=V V^{*} \hat{1}=\hat{e}, \xi \neq 0$. On the other hand, for any $x \in f B f$,

$$
\begin{aligned}
x \xi & =V^{*} V x V^{*} \hat{1}=V^{*} \theta(x) \hat{1} \\
& =V^{*} \hat{1} \theta(x) \quad(\theta(x) \in e A e) \\
& =\xi \theta(x) .
\end{aligned}
$$

Now we are going to investigate

$$
\xi \in K \subset f H \subset p L^{2} M \subset L^{2} M
$$

as a square integrable operator affiliated with M. By above we have $x L^{\xi}=L_{\xi} \theta(x)$ for any $x \in \mathcal{U}(f B f)$. Let $v\left|L_{\xi}\right|$ be the polar decomposition of L_{ξ}. Then

$$
\left|L_{\xi}\right|^{2}=\left(x L_{\xi}\right)^{*}\left(x L_{\xi}\right)=\left(L_{\xi} \theta(x)\right)^{*} L_{\xi} \theta(x)=\theta(x)^{*}\left|L_{\xi}\right|^{2} \theta(x)
$$

for $x \in \mathcal{U}(f B f)$. Thus $\left|L_{\xi}\right|$ commutes with $\theta(f B f)$. In particular $v^{*} v=s\left(\left|L_{\xi}\right|\right) \in$ $\theta(f B f)^{\prime} \cap e M e$. Finally,

$$
x v\left|L_{\xi}\right|=x L_{\xi}=L_{\xi} \theta(x)=v\left|L_{\xi}\right| \theta(x)=v \theta(x)\left|L_{\xi}\right|,
$$

which implies $x v v^{*} v=v \theta(x) v^{*} v$, i.e. $x v=v \theta(x)$ for any $x \in f B f$.
$(4) \Rightarrow(1)$: Take e, f, v as in (4). Let E_{θ} denote the conditional expectation $e M e \rightarrow \theta(f B f)$. Then $0 \neq E_{\theta}\left(v^{*} v\right) \in Z(\theta(f B f)), v E_{\theta}\left(v^{*} v\right)^{2} v^{*} \in(f B f)^{\prime} \cap f M f$.

Let $\left(f_{i}\right)_{i \in I}$ be a maximal family of mutually orthogonal nonzero projections satisfying $f_{0}=f$ and $f_{i} \precsim f$ in B. Thus, $\sum f_{i}$ is equal to the central support $z_{B}(f)$ of f in B. Put $u_{0}=f$. For each i, take a partial isometry u_{i} satisfyikng $u_{i} u_{i}^{*}=f_{i}$ and $u_{i}^{*} u_{i} \leq f$. Put $v_{i}=u_{i} v$. Now we have, for $w \in \mathcal{U} B$,

$$
\sum_{i}\left\|E_{A}\left(v_{i}^{*} w v_{0}\right)\right\|_{2}^{2} \geq \sum_{i}\left\|v v^{*} E_{\theta}\left(v_{i}^{*} w v_{0}\right)\right\|_{2}^{2}=\cdots=\tau\left(E_{\theta}\left(v^{*} v\right)^{3}\right)>0
$$

Since $\sum\left\|v_{i}^{*}\right\|_{2}^{2} \leq 1$ and $\left\|E_{A}\left(v_{i}^{*} w v_{0}\right)\right\|_{2} \leq\left\|v_{i}^{*}\right\|_{2}$, there exists a finite subset \mathscr{F} of $\left\{v_{i}: i \in I\right\}$ containing v_{0} and $\sum_{v_{i} \notin \mathscr{F}}\left\|v_{i}^{*}\right\|_{2}^{2}<\tau\left(E_{\theta}\left(v^{*} v\right)^{3}\right) / 2$.

Definition A.2. Let A and B be von Neumann subalgebras of $M . B$ is said to embed into A inside M when the equivalent conditions of Theorem A. 1 hold for B and A.

Corollary A.3. If B does not embed into A inside M, there exists a commutative von Neumann subalgebra B_{0} of B which does not embed into A inside M. Equivalently, if any commutative subalgebra of B embeds into A, B also embeds into A.

Remark A.4. The above theorem is useful when we have τ-symmetric unital completely positive maps $\phi_{i}: M \rightarrow M$ which restrict to the identity map on A, giving $\hat{\phi}_{i} \in\langle M, A\rangle \cap A^{\prime}$. Often one has $\hat{\phi}_{i} \in \mathbb{K}\langle M, A\rangle=C^{*}\left(x e_{A} y: x, y \in M\right)$.
$B \subset M$ is said to be rigid when $\phi_{i} \rightarrow$ Id uniformly on the unit ball of B_{1}. Then, taking $\phi=\phi_{i_{0}}$ that satisfies

$$
\|\phi(b)-b\|_{2}<\frac{1}{3} \quad\left(\forall b \in B_{1}\right)
$$

$d=\chi_{\left[\frac{1}{2}, 1\right]}(\hat{\phi})$ satisfies $\operatorname{Tr}(d)<\infty$ and

$$
\left\|w d w^{*} \hat{1}-\hat{1}\right\| \leq \frac{1}{2}+\left\|w \hat{\phi} w^{*} \hat{1}-\hat{1}\right\|=\frac{1}{2}+\left\|\phi\left(w^{*}\right)-w^{*}\right\|_{2} \leq \frac{5}{6}
$$

Hence $\overline{\operatorname{conv}}^{2}\left\{w d w^{*}\right\}$ does not contain 0 and B embeds into A inside M.

References

[1] F. Cipriani and J.-L. Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003) 78-120.
[2] A. Connes, Classification of injective factors. Cases $I I_{1}, I I_{\infty}, I I I_{\lambda}, \lambda \neq 1$, Ann. of Math. (2) 104 (1976) 73-115.
[3] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981) 431-450 (1982).
[4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, Bull. Amer. Math. Soc. 81 (1975) 921-924.
[5] D. Gaboriau, On orbit equivalence of measure preserving actions, in Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, 167-186.
[6] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and L^{2} Betti numbers. II. Applications to Grothendieck groups, L^{2}-Euler characteristics and Burnside groups, J. Reine Angew. Math. 496 (1998) 213-236.

[^0]: 2000 Mathematics Subject Classification. 46L10;37A20.

