ORBIT EQUIVALENCE AND OPERATOR ALGEBRAS

NARUTAKA OZAWA

ABSTRACT. This treatise is based on the lecture given by Narutaka Ozawa at the University of Tokyo during the winter semester 2006-2007. It includes an elementary theory of orbit equivalence via type II₁ von Neumann algebras, Lück's dimension theory [6] and its application to L^2 Betti numbers [5], convergence of the semigroup associated to a derivation and a theorem of Popa on embeddability of subalgebras.

Contents

1. Introduction	1
1.1. Orbit equivalence	1
1.2. Preliminaries on von Neumann algebras	3
1.3. Crossed products	4
1.4. von Neumann algebras of orbit equivalence	4
2. Elementary theory of orbit equivalence	5
2.1. Essentially free action of countable discrete groups	5
2.2. Inclusion of von Neumann algebras	6
2.3. Theorem of Connes-Feldman-Weiss	9
3. L^2 -Betti numbers	12
3.1. Introduction	12
3.2. Operators affiliated to a finite von Neumann algebra	14
3.3. Projective modules over a finite von Neumann algebra	15
3.4. Application to orbit equivalence	18
4. Derivations on von Neumann algebras	21
4.1. Densely defined derivations	21
4.2. Semigroup associated to a derivation	24
Appendix A. Embeddability of subalgebras	29
References	31

1. INTRODUCTION

1.1. Orbit equivalence.

Definition 1.1. Let Y be a topological space, B_Y the σ -algebra of the Borel sets of Y. When Y is a separable complete metric space, (Y, B_Y) (or, by abuse of language, Y) is said to be a standard Borel space (standard σ -algebra).

Remark 1.2. When X is a standard Borel space, X is either (at most) countable or isomorphic to the closed interval [0, 1].

²⁰⁰⁰ Mathematics Subject Classification. 46L10;37A20.

Definition 1.3. A standard Borel space with a Borel probability measure is said to be a (standard) probability space. A point x of a probability space (X, μ) is said to be an atom of (X, μ) when $\mu(x) > 0$. A probability space (X, μ) is said to be diffuse when it has no atom.

Example 1.4. (Examples of standard probability spaces)

- (1) The infinite product $(\prod_{n \in \mathbb{N}} \{0, 1\}, \otimes_n \mu_n)$, where μ_n is a probability measure on $\{0, 1\}$ for each $n \in \mathbb{N}$ is standard.
- (2) When G is a separable compact group, the normalized Haar measure on G makes G into a standard probability space.

When (X, μ) is a probability space, we obtain a (w^{*}-) separable von Neumann algebra $L^{\infty}X$ and a normal state (also denoted by μ) on it. To each isomorphism $\phi: (X, \mu) \to (Y, \nu)$ of probability spaces, we obtain an isomorphism $\phi_*: L^{\infty}Y \to L^{\infty}X, f \mapsto f \circ \phi$ satisfying $\mu \circ \phi^* = \nu$.

Theorem 1.5. (von Neumann)

- (1) When (X,μ) and (Y,ν) are diffuse probability spaces, there is an isomorphism $(L^{\infty}(X,\mu),\mu) \simeq (L^{\infty}(Y,\nu),\nu).$
- (2) For each isomorphism $\sigma: L^{\infty}Y \to L^{\infty}X$ with $\mu\sigma = \nu$, there exists a Borel isomorphism $\phi: X \to Y$ such that $\phi^*\mu = \nu$ and $\phi_* = \sigma$.

Proof. (Outline): (1) We may assume that $Y = \prod_{\mathbb{N}} \{0, 1\}, \mu = \bigotimes_{\mathbb{N}} (\frac{1}{2}, \frac{1}{2})$. Since X is diffuse, we have a decomposition $X = X_0 \coprod X_1$ by Borel sets with $\mu(X_0) = \frac{1}{2}$. We can continue this procedure as $X_0 = X_{00} \coprod X_{01}, \mu(X_{00}) = \frac{1}{4}$, so on. The partition by $X_{**\cdots}$ can be made fine enough because there is a separating family $(B_n)_{n \in \mathbb{N}}$ in B_X , which will imply the desired isomorphism between $L^{\infty}X$ and $L^{\infty}Y$ compatible with the normal states.

(2) Let λ denote the Lebesgue measure on the closed interveal [0, 1]. Since there exists an isomorphism $(L^{\infty}Y,\nu) \simeq (L^{\infty}[0,1],\lambda)$, we may assume that Y = [0,1] and $\nu = \lambda$ here. For each $r \in \mathbb{Q} \cap [0,1]$, put $E_r = \sigma(\chi_{[0,r)})$. Define a mapping $\phi: X \to [0,1]$ by $\phi(x) = \inf \{r: x \in E_r\}$. The inverse image of [0,t) under ϕ is equal to $\cup_{r < t} E_r$. The latter is obviously Borel, which means that ϕ is a Borel map. By $\sigma(\chi_{[0,r)}) = \phi^*(\chi_{[0,r)})$ for $r \in \mathbb{Q} \cap [0,1]$, we have $\sigma = \phi^*$ and $\phi_*\mu =$ Lebesgue measure.

It remains to replace ϕ by a Borel isomorphism. Let $(B_n)_{n\in\mathbb{N}}$ be a separating family of X. For each n, there exists $F_n \in B_Y$ such that $\phi_*\chi_{F_n} = \chi_{B_n}$. Thus $N = \bigcup_n B_n \bigtriangleup \phi^{-1} F_n$ is a null set. On $X \setminus N$, the condition $x \in B_n$ is equivalent to $\phi(x) \in F_n$. If x and y are distinct points of $X \setminus N$, there exists an integer n such that $x \in B_n$ while $y \notin B_n$. Thus $\phi(x) \neq \phi(y)$ and ϕ is injective on $X \setminus N$. We may assume that N and $Y \setminus \phi(X \setminus N)$ are uncountable so that there is an isomorphism of N to $Y \setminus \phi(X \setminus N)$.

Let $\Gamma \curvearrowright (X,\mu)$ be a measure preserving action by a discrete countable group. (We may assume that it acts by Borel isomorphisms.) Let s be an element of Γ . When f is a complex Borel function defined on X, put $\alpha_s(f): x \mapsto f(s^{-1}x)$. This induces a μ -preserving *-automorphism on $L^{\infty}X$. This way we obtain an action $\alpha: \Gamma \curvearrowright L^{\infty}(X,\mu)$ preserving the state μ .

Definition 1.6. Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Gamma \curvearrowright (Y, \nu)$ are said to be conjugate when there exists an probability space isomorphism $\phi: (X, \mu) \to (Y, \nu)$ witch is a.e.

 Γ -equivariant. This is equivalent to the existence of a Γ -equivariant state preserving isomorphism $\sigma: L^{\infty}(Y, \nu) \to L^{\infty}(X, \mu)$.

Definition 1.7. Let $\Gamma \curvearrowright (X, \mu)$ be an action by measure preserving Borel isomorphisms. The subset $\mathscr{R}_{\Gamma \curvearrowright (X,\mu)} = \{(sx, x) : s \in \Gamma\}$ of $X \times X$ is called the orbit equivalence relation of the action.

Definition 1.8. Two actions $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are said to be orbit equivalent when there exists a measure preserving Borel isomorphism $\phi: Y \to X$ satisfying $\Gamma \phi(y) = \phi(\Lambda y)$ for a.e. $y \in Y$.

Definition 1.9. A partial Borel isomorphism on X is a triple (ϕ, A, B) consisting of $A, B \in B_X$ and a Borel isomorphism ϕ of A onto B.

Definition 1.10. A measure preserving standard orbit equivalence is a subset \mathscr{R} of $X \times X$ satisfying the following conditions:

- (1) \mathscr{R} is a Borel subset with respect to the product space structure.
- (2) \mathscr{R} is an equivalence relation on X.
- (3) For each $x \in X$, the \mathscr{R} -equivalence class of x is at most countable.
- (4) Any partial Borel isomorphism ϕ whose graph is contained in \mathscr{R} , ϕ preserves measure.

Theorem 1.11. (Lusin) Let X, Y be standard spaces.

- (1) When $\phi: X \to Y$ is a countable-to-one Borel map, $\phi(X)$ is Borel. Moreover there exists a Borel partition $X = \coprod X_n$ such that $\phi|_{X_n}$ is a Borel isomorphism onto $\phi(X_n)$.
- (2) When \mathscr{R} is a standard orbit equivalence, $\mathscr{R} = \bigcup_n \mathscr{G}(\phi_n)$ where ϕ_n is a partial Borel isomorphism for each n.

Lemma 1.12. Let A be a subset of a standard space X, ϕ a mapping of A into X. ϕ and A are Borel if and only if the graph $\mathscr{G}(\phi) = \{(\phi x, x) : x \in A\}$ of ϕ is Borel in $X \times X$.

Proof. \leftarrow is an immediate consequence of Theorem 1.11.

⇒: Let $(B_n)_{n \in \mathbb{N}}$ be a separating family of X. The condition $y \neq \phi(x)$ is equivalent to $(y, x) \in \bigcup_n (\complement B_n) \times \phi^{-1}(B_n)$. Thus $\mathscr{G}(\phi) = \complement(\bigcup(\complement B_n) \times \phi^{-1}(B_n))$. \Box

1.2. **Preliminaries on von Neumann algebras.** Let H be a Hilbert space, B(H) the involutive Banach algebra of the continuous endomorphisms of H, A a *-subalgebra of B(H). (typically A generates a von Neumann algebra M of our interest.) In the following A is often assumed to admit a cyclic tracial vector $\xi_{\tau} \in H$, i.e. $\|\xi_{\tau}\| = 1$, $A\xi_{\tau}$ is dense in H, and that the vector state $\tau(a) = \langle a\xi_{\tau}, \xi_{\tau} \rangle$ is tracial.

Remark 1.13. A state τ is tracial means that by definition the two sesquilinear forms $\tau(ab^*)$ and $\tau(b^*a)$ in (a, b) are same. To check this property, by polarization it is enough to show $\tau(aa^*) = \tau(a^*a)$. Under the assumption above ξ_{τ} becomes a separating vector for A''. Indeed, $a\xi_{\tau} = 0$ implies $\tau(bc^*a) = 0$ for $b, c \in A$, which means $\tau(c^*ab) = 0$ and in turn $\langle aH, H \rangle = 0$.

Notation. Let \hat{a} denote $a\xi_{\tau}$. (Hence we have $\langle \hat{a}, \hat{b} \rangle = \tau(ab^*)$.)

Remark 1.14. We have a conjugate linear map $J: H \to H$ determined by $\hat{a} \mapsto \hat{a^*}$. Then we have $JaJ\hat{b} = \widehat{ba^*}$ which implies $JAJ \subset A'$ and $JA''J \subset A'$. On the other hand, for any $x \in A'$ and $a \in A$

$$Jx\xi_{\tau}, a\xi_{\tau}\rangle = \langle Ja\xi_{\tau}, x\xi_{\tau}\rangle = \langle a^*\xi_{\tau}, x\xi_{\tau}\rangle = \langle x^*\xi_{\tau}, a\xi_{\tau}\rangle.$$

Thus $Jx\xi_{\tau} = x^*\xi_{\tau}$, thence ξ_{τ} is a cyclic tracial vector for A'. The J-operator for (A',ξ_{τ}) is exactly equal to the original J. Doing the same argument as above, we obtain $JA'J \subset A''$.

Remark 1.15. The map $A'' \to A', a \mapsto JaJ$ is a conjugate linear *-algebra isomorphism.

1.3. Crossed products. Let $\Gamma \curvearrowright (X, \mu)$ be a measure preserving action of a discrete group on a standard probability space X. Recall that we have an action $\Gamma \curvearrowright L^{\infty}X$ induced by $\alpha_s(f) = f(s^{-1}-)$ for $s \in \Gamma$.

On the other hand, we get a unitary representation $\pi \colon \Gamma \curvearrowright L^2(X,\mu)$ given by the same formula $\pi_s f = \alpha_s f$ as the one on $L^{\infty}X$. Note that $\pi_s f \pi_s^* = \alpha_s(f)$ for $s \in \Gamma$ and $f \in L^{\infty}X$.

Definition 1.16. Let $\lambda \colon \Gamma \curvearrowright B(\ell_2 \Gamma)$ denote the regular representation. The von Neumann algebra $L^{\infty}X \rtimes \Gamma$ on $L^2(X) \otimes \ell_2 \Gamma$ is generated by the operators $\pi \otimes \lambda(s)$ for $s \in \Gamma$ and $f \otimes 1$ for $f \in L^{\infty}X$ is called the crossed product of $L^{\infty}X$ by α .

Let A denote $\{\sum_{\text{finite}} f_s \otimes 1 \cdot \pi \otimes \lambda(s)\} \subset L^{\infty}X \rtimes \Gamma$. By abuse of notation, in the following f stands for $f \otimes 1$ and $\lambda(s)$ for $\pi \otimes \lambda(s)$. Now $\xi_{\tau} = \mathbf{1} \otimes \delta_e \in L^2X \otimes \ell_2\Gamma$ is a cyclic tracial vector for A. Indeed, it is obviously cyclic, while $\tau(f\lambda(s)) = \delta_{e,s}\mu(f)$ implies the tracial property:

$$\tau(f\lambda(s)g\lambda(t)) = \delta_{st,e}f\alpha_s(g) = \delta_{ts,e}\alpha_t(f)g = \tau(g\lambda(t)f\lambda(s)).$$

Note that the above expressions are nonzero only if $s = t^{-1}$.

Let V denote the isometry $L^2(X) \to L^2(X) \otimes \ell_2\Gamma$, $f \mapsto f \otimes \delta_e$. Then the contraction $E: L^{\infty}X \rtimes \Gamma \to B(L^2(X))$, $a \mapsto V^*aV$ has image $L^{\infty}X$, i.e. E is a conditional expectation (see Definition 2.6) of $L^{\infty}X \rtimes \Gamma$ onto $L^{\infty}X$. Note that $\tau = \mu \circ E$.

1.4. von Neumann algebras of orbit equivalence. Let \mathscr{R} be a standard orbit equivalence on X. Hence it is a countable disjoint union $\coprod_n \mathscr{G}(\phi_n)$ of the graphs of partial isometries. We may assume that $\phi_0 = \operatorname{Id}_X$. We will define a "Borel probability measure" on \mathscr{R} .

Observe that when $f: \mathscr{R} \to \mathbb{C}$ is a Borel function, $X \to \mathbb{C}$, $x \mapsto \sum_{y} f(y, x) = \sum_{n} f(\phi_{n}x, x)$ is also Borel. Define a measure ν on \mathscr{R} by putting

$$\int_{\mathscr{R}} \xi d\nu = \int_X \sum_{y \mathscr{R} x} \xi(y, x) d\mu(x)$$

for each Borel function ξ on \mathscr{R} . Thus when B is a Borel subset of \mathscr{R} , $\nu(B) = \int |\pi_r^{-1}(x) \cap B| d\mu(x)$ for the second projection $\pi_r : \mathscr{R} \to X$, $(y, x) \mapsto x$.

We get a pseudogroup $[\![\mathscr{R}]\!]$ whose underlying set is

 $\{\phi : \text{partial Borel isomorphism}, \mathscr{G}(\phi) \subset \mathscr{R}\}.$

The composition $\phi \circ \psi$ of ϕ and ψ is defined as the composition of the maps on $\psi^{-1} \operatorname{dom}(\phi)$. In particular, the identity maps of the Borel sets are the units of $[\![\mathscr{R}]\!]$, and $\phi \in [\![\mathscr{R}]\!]$ implies $\phi^{-1} \in [\![\mathscr{R}]\!]$.

For each $\phi \in \llbracket \mathscr{R} \rrbracket$, define a partial isometry $v_{\phi} \in B(L^2(\mathscr{R},\nu))$ by $v_{\phi}\xi(y,x) = \xi(\phi^{-1}y,x)$. Thus $v_{\phi}v_{\psi} = v_{\phi\circ\psi}$. On the other hand, the set $\{\chi_{\mathscr{G}(\phi)} : \phi \in \llbracket \mathscr{R} \rrbracket\}$ is total in $L^2(\mathscr{R},\nu)$ and $v_{\phi}\chi_{\mathscr{G}\psi} = \chi_{\mathscr{G}\phi\circ\psi}$. Moreover, we have

$$\langle v_{\phi}\chi_{\mathscr{G}\psi},\chi_{\mathscr{G}\theta}\rangle = \int \mathscr{G}(\phi\psi) \cap \mathscr{G}(\theta)d\nu = \mu \left\{ x: \phi\psi x = \theta x \right\} = \langle \chi_{\mathscr{G}\psi}, v_{\phi^{-1}}\chi_{\mathscr{G}\theta}\rangle,$$

which implies $v_{\phi}^* = v_{\phi^{-1}}$.

Definition 1.17. The von Neumann algebra $v \mathbb{N} \mathscr{R}$ on $L^2(\mathscr{R}, \nu)$ generated by $\{v_\phi : \phi \in \llbracket \mathscr{R} \rrbracket\}$ is called the von Neumann algebra of \mathscr{R} .

 $\xi_{\tau} = \chi_{\mathscr{G}(\mathrm{Id}_X)}$ is a cyclic tracial vector for vN \mathscr{R} : in fact,

$$\tau(v_{\phi\psi}) = \mu(\{x : \phi \circ \psi(x) = x\})$$
$$= \mu(\{y : \psi\phi y = y\}) \quad (y = \phi^{-1}x)$$
$$= \tau(v_{\psi\phi}).$$

Note that $L^{\infty}X$ is contained "in the diagonal" of $vN\mathscr{R}$, subject to the relation $v_{\phi}f = (f \circ \phi^{-1})v_{\phi}$. We have a conditional expectation $E: vN\mathscr{R} \to L^{\infty}X, a \mapsto V^*aV$ implemented by the "diagonal inclusion" isometry $V: L^2X \to L^2\mathscr{R}$. We have $E(v_{\phi}) = \chi_{\{x:\phi x=x\}}$.

2. Elementary theory of orbit equivalence

2.1. Essentially free action of countable discrete groups. Suppose we are given a measure preserving action $\Gamma \curvearrowright (X, \mu)$ by a discrete group on a standard probability space. As in the last section we get two inclusions of von Neumann algebras:

(1) $L^{\infty}X \subset L^{\infty}X \rtimes \Gamma$ in $B(L^2X \otimes \ell_2\Gamma)$.

(2) $L^{\infty}X \subset \mathsf{vN}(\mathscr{R}_{\Gamma \frown (X,\mu)})$ in $B(L^2\mathscr{R})$.

In general these are different, e.g. when the action is trivial.

Definition 2.1. An action $\Gamma \curvearrowright (X, \mu)$ is said to be essentially free when the fixed point set of s has measure 0 for any $s \in G \setminus \{e\}$.

Theorem 2.2. When the action $\Gamma \curvearrowright (X, \mu)$ is essentially free, the above two inclusions of von Neumann algebras are equal.

Remark 2.3. $J\hat{v_{\phi}} = v_{\phi^{-1}}$ implies $J\xi(x,y) = \overline{\xi(y,x)}$.

Proof of the theorem. Identification of the representation Hilbert spaces is given by $U: L^2 X \otimes \ell_2 \Gamma \to L^2 \mathscr{R}, g \otimes \delta_t \mapsto g \cdot \chi_{\mathscr{G}(t)}$. When we have an equality $f \chi_{\mathscr{G}(s)} = g \chi_{\mathscr{G}(t)}$ of nonzero vectors in $L^2 \mathscr{R}, s$ must be equal to t by the essential freeness assumption. Now,

$$U^*v_s U(g \otimes \delta_t) = U^*\alpha_s(g)v_s \chi_{\mathscr{G}(t)} = U^*\alpha_s(g)\chi_{\mathscr{G}(st)} = \alpha_s(g) \otimes \delta_{st}.$$

This shows $U^*v_sU = \pi \otimes \lambda(s)$. On the other hand, $U^*fU = f \otimes 1$ is trivial. Thus, via $U, L^2X \rtimes \Gamma$ is identified to $L^2\mathscr{R}$.

Definition 2.4. Let M be a finite von Neumann algebra, A a von Neumann subalgebra (in the following A is often assumed to be commutative). The subset $\mathcal{N}A = \{u \in \mathcal{U}M : uAu^* = A\}$ of $\mathcal{U}M$ is called the normalizer of A. Likewise $\mathcal{N}^pA = \{v \in M : \text{partial isometry}, v^*v, vv^* \in A, vAv^* = Avv^*\}$ is called the partial normalizer of A.

Lemma 2.5. For any $v \in \mathcal{N}^p A$, there exist $u \in \mathcal{N}A$ and $e \in \operatorname{Proj}(A)$ such that v = ue. For any $\phi \in \llbracket \mathscr{R} \rrbracket$, there exists a Borel isomorphism $\tilde{\phi}$ whose graph is contained in \mathscr{R} and $\tilde{\phi}|_{\operatorname{dom}\phi} = \phi$.

Proof. We prove the second assertion as the demonstration of the first one is an algebraic translation of it. Put $E = \operatorname{dom} \phi$ and $F = \operatorname{ran} \phi$. When $\mu(E \triangle F) = 0$, there is nothing to do. When $\mu(E \triangle F) \neq 0$, $\exists k > 0$ such that $\phi^k(E \setminus F) \cap (F \setminus E)$ is non-null. If not, $\phi^k(E \setminus F) \subset F \cap \complement(F \setminus E) = F \cap E \subset E$ up to a null set and ϕ^{k+1} can be defined a.e. on $E \setminus F$. Thus we would get a sequence $(\phi^k(E \setminus F))_{k \in \mathbb{N}}$ of subsets with nonzero measure. For any pair m < n, $\phi^m(E \setminus F) \cap \phi^n(E \setminus F)$ is equal to $\phi^m(\phi^{n-m}(E \setminus F) \cap (E \setminus F))$ which is null. This contradicts to $\mu(X) = 1$.

Now, given such k, put $\phi_1 = \phi \coprod (\phi^{-k}|_{\phi^k(E \setminus F) \cap (F \setminus E)})$. Then we can use the maximality argument (Zorn's lemma) to obtain a globally defined Borel isomorphism.

2.2. Inclusion of von Neumann algebras.

Definition 2.6. Let $M \subset N$ be an inclusion of von Neumann algebras. A unital completely positive map $E: N \to M$ is said to be a conditional expectation when it satisfies E(axb) = aE(x)b for $a, b \in M$ and $x \in N$.

Fact. When N is finite with a faithful tracial state τ , there exists a unique conditional expectation E that preserves τ . Then we obtain an orthogonal projection $e_M: L^2N \to \overline{M\xi_{\tau}} \simeq L^2M$ extending E.

Remark 2.7. (Martingale) If we are given $N_1 \subset N_2 \subset \cdots \subset M$ with $N = \bigvee_i N_i$ or $M \supset N_1 \supset N_2 \supset \cdots$ with $N = \bigcap_i N_i$, together with conditional expectations $E_n \colon M \to N_n$ and $E \colon M \to N$, $e_n \to e$ in the strong operator topology implies $\|E(x) - E_n(x)\|_2 \to 0.$

For example, let $A \subset M$ be a finite dimensional commutative subalgebra, e_i $(1 \leq i \leq n)$ the minimal projections of A. Then $E_{A'\cap M}(x) = \sum_{i=1}^{n} e_i x e_i$. If we have a sequence $A_1 \subset A_2 \subset \cdots \subset M$ of finite dimensional commutative subalgebras and $A = \lor A_i$, we have $E_{A'_n \cap M} \to E_{A' \cap M}$. The latter is equal to E_A if and only if A is a maximal abelian subalgebra.

Definition 2.8. A von Neumann subalgebra $A \subset M$ is said to be a Cartan subalgebra of M when it is a maximal abelian subalgebra in M and $\mathcal{N}(A)'' = M$. (Then we also have $M = \mathcal{N}^p(A)''$.)

Theorem 2.9. $L^{\infty}X \subset \mathsf{vN}\mathscr{R}$ is a Cartan subalgebra.

Proof. Since the generators v_{ϕ} are in $\mathcal{N}A$, it is enough to show that $L^{\infty}X$ is maximal abelian in $vN\mathscr{R}$. Recall that $\mathscr{R} = \coprod \mathscr{G}(\phi_n)$ with $\phi_0 = \mathrm{Id}_X$. Then let a be an

element of the relative commutant of $L^{\infty}X$. \hat{a} can be written as $\sum_{n} f_n \chi_{\mathscr{G}(\phi_n)}$. By assumption fa = af for any $f \in L^{\infty}X$. Thus,

$$\widehat{fa} = \sum f f_n \chi_{\mathscr{G}(\phi_n)}, \qquad \widehat{af} = J \overline{f} J \widehat{a} = \sum f \circ \phi_n^{-1} \cdot f_n \chi_{\mathscr{G}(\phi_n)}.$$

Hence $ff_n = f \circ \phi_n f_n$ for any *n* and any *f*, which implies $f_n = 0$ except for n = 0.

Definition 2.10. \mathscr{R} is said to be ergodic when any \mathscr{R} -invariant Borel subset of X is of measure either 0 or 1. An action $\Gamma \curvearrowright (X, \mu)$ is said to be ergodic when $\mathscr{R}_{\Gamma \curvearrowright X}$ is ergodic.

Corollary 2.11. $vN\mathscr{R}$ is a factor if and only if \mathscr{R} is ergodic.

Proof. The Cartan subalgebra $L^{\infty}X$ contains the center of $vN\mathscr{R}$. The central projections are the characteristic functions of the \mathscr{R} -invariant Borel subsets.

Let $v \in \mathcal{N}^p L^{\infty}$, $E, F \in B_X$ the Borel sets (up to null sets) respectively representing the projections v^*v and vv^* in A. The map $L^{\infty}E \to L^{\infty}F$, $f \mapsto vfv^*e$ is a *-isomorphism. Thus there exists a Borel isomorphism $\phi_v \colon E \to F$ such that $vfv^* = f \circ \phi_v^{-1}$. ($v = \sigma v_{\phi_v}$ for some $\sigma \in \mathcal{U}L^{\infty}F$.)

Theorem 2.12. In the notation as above, $v\xi v^* = \xi(\phi_v^{-1}(y), x) \nu$ -a.e. for any $v \in \mathcal{N}^p L^\infty$ and any $\xi \in L^\infty \mathscr{R}$. In particular, $\phi_v \in \llbracket \mathscr{R} \rrbracket$ up to a null set. Moreover, we have $L^\infty \vee JL^\infty J = L^\infty \mathscr{R}$.

Proof. Put $A = L^{\infty}X$. First, $fJgJ \in L^{\infty}$ for $f,g \in A$: indeed, fJgJ is the multiplication by the function $f(y)\overline{g(x)}$ on \mathscr{R} .

$$vfJgJv^* = vfv^*JgJ = f \circ \phi_v^{-1}JgJ \quad (JMJ = M').$$

Hence $v\xi v^*(y,x) = v(\phi_v^{-1}y,x)$ for $\xi \in A \vee JAJ$. It remains to show $\chi_{\mathscr{G}(\mathrm{Id}_X)} \in A \vee JAJ$. Because, if this is satisfied, we will have $\chi_{\mathscr{G}(\phi_v)} = v\chi_{\mathscr{G}(\mathrm{Id})}v^* \in L^{\infty}\mathscr{R}$.

Take an increasing sequence $A_1 \subset A_2 \subset \cdots$ of finite dimensional algebras with $A = \lor A_k$. The conditional expectation $E_n : \lor \mathbb{N} \mathscr{R} \to A_n$ is equal to $\sum_k e_k^{(n)} J e_k^{(n)} J$ (as an operator on $L^2 \mathscr{R}$) for the minimal projections $(e_k^{(n)})_k$ of A_n . Now, $(E_n)_n$ converges to the conditional expectation E_A onto A which is equal to the multiplication by $\chi_{\mathscr{G}(\mathrm{Id}_X)}$ in the strong operator topology. Hence $\chi_{\mathscr{G}(\mathrm{Id})} \in A \lor JAJ$. \Box

Remark 2.13. (2-cocycle [4]) Suppose we are given a map $\sigma_{\phi,\psi}$: ran $(\phi\psi) \to \mathbb{T}$ for each pair $\phi, \psi \in \llbracket \mathscr{R} \rrbracket$, satisfying $\sigma_{\phi,\psi}\sigma_{\phi\psi,\theta} = (\sigma_{\psi,\theta} \circ \phi^{-1})\sigma_{\phi,\psi\theta}$. Then $v_{\phi}^{\sigma}v_{\psi}^{\sigma} = \sigma_{\phi,\psi}v_{\phi\psi}^{\sigma}$ determines an associative product on $\mathbb{C}\llbracket \mathscr{R} \rrbracket$ with a trace τ . The GNS representation gives an inclusion $L^{\infty}X \subset \mathsf{vN}(\mathscr{R},\sigma) \subset B(L^2\mathscr{R})$ of von Neumann algebras.

Fact. Any Cartan subalgebra of $vN(\mathscr{R}, \sigma)$ is isomorphic to $L^{\infty}X$.

Theorem 2.14. Let \mathscr{R} (resp. \mathscr{S}) be an orbit equivalence on X (resp. Y), $F: X \to Y$ a measure preserving Borel isomorphism. The induced isomorphism $F_*: L^{\infty}X \to L^{\infty}Y$ can be extended to a normal *-homomorphism $vN\mathscr{R} \to vN\mathscr{S}$ if and only if $F\mathscr{R} \subset \mathscr{S}$ up to a ν -null set.

NARUTAKA OZAWA

Proof. For simplicity we identify Y with X by means of F. If $[\mathscr{R}] \subset [\mathscr{S}]$, the required homomorphism is induced by the isometry $L^2 \mathscr{R} \to L^2 \mathscr{S}$. Conversely, if $\pi: \mathsf{vN}\mathscr{R} \to \mathsf{vN}\mathscr{S}$ is an extension of F_* , for any $\phi \in [\mathscr{R}]$ we have

$$\pi(v_{\phi})\pi(f)\pi(v_{\phi})^* = \pi(f \circ \phi^{-1}) = f \circ \phi^{-1},$$

which implies $\pi(v_{\phi}) = \sigma_{\phi}v_{\phi}$ for some $\sigma_{\phi} \in L^{\infty}X$.

1.

Let M be a finite von Neumann algebra with trace τ , identified to a subalgebra of $B(L^2M)$. Suppose A is a von Neumann subalgebra of M. Let e_A be the projection onto the span of $A\xi_{\tau}$ and put $\langle M, A \rangle = (M \cup \{e_A\})''$.

For any $x \in M$ and $\hat{a} \in L^2 A$,

$$e_A x \hat{a} = e_A \widehat{xa} = \widehat{E_A(xa)} = \widehat{E_A(x)a}$$

which implies $e_A x e_A = E_A(x) e_A$. In particular, we have

$$\langle M, A \rangle = \overline{\left\{ \sum x_j e_A y_j + z : x_j, y_j, z \in M \right\}}^{\text{wop}}.$$

Now,

$$e_A J x J e_A \hat{a} = e_A \widehat{ax^*} = E_A(ax^*) = a E_A(x^*) = J E_A(x) J \hat{a}$$

implies $\langle M, A \rangle' = M' \cap \{e_A\}' = JAJ$, consequently $\langle M, A \rangle = (JAJ)'$. Note that when A is commutative $e_A J a J = a^* e_A$ for $a \in A$.

We have the "canonical trace" Tr on $\langle M, A \rangle$ which is a priori unbounded defined by $\sum_i x_i e_A y_i \mapsto \tau(\sum_i x_i y_i)$. Still, Tr is normal semifinite, and its tracial property is verified as follows:

$$\begin{split} \left\| \sum x_i e_A y_i \right\|_{2,\mathrm{Tr}}^2 &= \mathrm{Tr}(\sum y_i^* e_A x_i^* x_j e_A y_j) = \sum \tau(y_i^* E_A(x_i^* x_j) y_j) \\ &= \sum \tau(E_A(y_j y_i^*) E_A(x_i^* x_j)) = \|y_i e_A x_i^*\|_{2,\mathrm{Tr}}^2. \end{split}$$

Suppose $A \subset M$ is Cartan. Put $\tilde{A} = \{A, JAJ\}'' \subset \langle M, A \rangle$.

Example 2.15. When $A = L^{\infty}X$, $M = \mathsf{vN}\mathscr{R}$, we have $\tilde{A} = L^{\infty}\mathscr{R}$, $e_A = \chi_{\Delta}$ and Tr $|_{\tilde{A}} = \int d\nu$ on $L^{\infty} \mathscr{R}$. Indeed,

$$\operatorname{Tr}(fe_A) = \tau(f) = \int_{\Delta} f d\mu = \int f d\nu \quad (f \in L^{\infty}X)$$

implies

$$\operatorname{Tr}(ufe_A u^*) = \operatorname{Tr}(fe_A) = \int_{\Delta} f d\mu = \int ufe_A u^* d\nu \quad (f \in L^{\infty} X, u \in \mathcal{N}A).$$

Remark 2.16. When $A \subset M$ is Cartan and $p \in \operatorname{Proj}(A)$, $A_p \subset pMp$ is also Cartan since $\mathcal{N}_{pMp}^p(A_p) = p\mathcal{N}_M^p(A)p.$

Example 2.17. When $Y \subset X$, the restricted equivalence $\mathscr{R}|_Y = Y \times Y \cap \mathscr{R}$ gives $\mathsf{vN}(\mathscr{R}|_Y) = p_Y(\mathsf{vN}\mathscr{R})p_Y.$

Exercise 2.18. Show that when A is a Cartan subalgebra of a factor M, $\tau p_1 = \tau p_2$ for $p_1, p_2 \in \operatorname{Proj}(A)$ implies the existence of $v \in \mathcal{N}^p A$ such that $p_1 \sim p_2$ via v. This implies that given an ergodic relation \mathscr{R} on X, subsets Y_1 and Y_2 of X with the same measure, one would obtain $(A_{p_{Y_1}} \subset M_{p_{Y_1}}) \simeq (A_{p_{Y_2}} \subset M_{p_{Y_2}})$ via v.

2.3. Theorem of Connes-Feldman-Weiss.

Definition 2.19. A discrete group Γ is said to be amenable when $\ell_{\infty}\Gamma$ has a left Γ invariant state.

Example 2.20. Commutative groups, or more generally solvable groups are amenable. The union of an countable increasing sequence of amenable groups are again amenable.

Definition 2.21. A cartan subalgebra $A \subset M$ is said to be amenable when there exists a state $m: \tilde{A} \to \mathbb{C}$ invariant under the adjoint action of $\mathcal{N}A$. An orbit equivalence \mathscr{R} on X is said to be amenable when $L^{\infty}X \subset \mathsf{vN}\mathscr{R}$ is amenable.

Remark 2.22. Let $\Gamma \cap X$ be a measure preserving essentially free action. Since Γ is assumed to be discrete, \mathscr{R} can be identified to $\Gamma \times X$ as a measurable space and an invariant measure on \mathscr{R} is nothing but a product measure on $\Gamma \times X$ of an invariant measure on Γ times an arbitrary measure on X. Thus, \mathscr{R} is amenable if and only if Γ is amenable.

Definition 2.23. A von Neumann algebra M on H is said to be injective when there exists a conditional expectation $\Phi: B(H) \to M$.

Fact. The above condition is independent of the choice of a faithfull representation $M \hookrightarrow B(H)$. Moreover, M is injective if and only if it is AFD [2].

Theorem 2.24. (Connes-Feldman-Weiss [3]) Let M be a factor with separable predual, A a Cartan subalgebra of M. The following conditions are equivalent:

- (1) The pair $A \subset M$ is amenable.
- (2) This pair is AFD in the sense that for any finite subset \mathscr{F} of $\mathcal{N}A$ and a positive real number $\epsilon > 0$, there exists a finite dimensional subalgebra B of M such that
 - B has a matrix unit consisting of elements of $\mathcal{N}^p A$.
 - $||v E_B(v)|| < \epsilon$ for any $v \in \mathscr{F}$.
- (3) (A, M) is isomorphic to $(D, \bar{\otimes}M_2\mathbb{C}$ where $D = \bar{\otimes}D_2$ for the diagonal subalgebra $D_2 \subset M_2$. (Note that $\mathcal{N}^p D$ is generated by the "matrix units" of $M_{2^{\infty}} = \otimes M_2$.)
- (4) M is injective.

Lemma 2.25. In the assertion of (2), B may be assumed to be isomorphic to M_{2^N} for some N.

Proof of the lemma. Perturbing a bit, we may assume that $\tau(e_{ij}^{(d)}) \in 2^{-N}\mathbb{N}$ for large enough N where $(e_{ij}^{(d)})_{d,1\leq i,j\leq n_d}$ is a matrix unit of $B = \bigoplus_d M_{n_d}$. By taking a partition if necessary, we may assume that $\tau(e_{ii}^{(d)} = 2^{-N})$ for any d and i. Then, since M is a factor, we have $e_{ii}^{(d)} \sim e_{jj}^{(f)}$ in M for any d, f, i and j. This means that B is contained in a subalgebra of M which is isomorphic to M_{2^N} .

Proof of $(2) \Rightarrow (3)$: Note that there is a total (with respect to the 2-norm) sequence $(v_k)_{k\in\mathbb{N}} \subset \mathcal{N}^p A$. We are going to construct an increasing sequence of subalgebras $(B_k)_k$ in M with compatible matrix units $(e_{i,j}^{(k)})_{i,j}$ satisfying $B_k \simeq M_{2^{N_k}}$ and $||E_{B_k}(v_l) - v_l||^2 < \frac{1}{k}$ for $l \leq k$.

Suppose we have constructed B_1, \ldots, B_k . Applying the assertion of (2) to the finite set $\mathscr{F}' = \left\{ e_{i,r}^{(k)} v_l e_{r,1}^{(k)} \right\}$, we obtain a matrix units $(f_{ij})_{i,j}$ in $\mathcal{N}^p A$ such that $\sum f_{ii} = e_{11}^{(k)}$ and

$$||E_{\operatorname{span} f_{ij}}(x) - x|| < \frac{1}{n(k)^2(k+1)}$$

where n(k) denotes the size of B_k . By the assumption that A is a maximal abelian subalgebra in M, the projections of $\mathcal{N}^p A$ are actually contained in A. Thus we obtain an inclusion $D \subset A$ (hence the equality between them) under the identification $M \simeq \bigotimes_{\mathbb{N}} M_2 = (\bigcup B_k)''$.

Proof of $(3) \Rightarrow (4)$: By assumption $M = (\cup B_n)''$ where B_n are finite dimensional subalgebras of M, $M' = (\cup JB_nJ)''$. Let Φ_n denote the conditional expectation of B(H) onto $(JB_nJ)'$: $\Phi_n(x) = \int_{\mathcal{U}(JB_nJ)} uxu^* du$ where du denotes the normalized Haar measure on the compact group $\mathcal{U}(JB_nJ)$. For each x, the sequence $(||\Phi_n(x)||)_n$ is bounded above by ||x||. Thus we can take a Banach limit $\Phi(x)$ of $(\Phi_n(x))_n$, which defines a conditional expectation of B(H) onto $\bigcap_n (JB_nJ)' = (\bigcup JB_nJ)' = M$.

Proof of $(4) \Rightarrow (1)$: Put $H = L^2 M$ and let Φ be a conditional expectation of B(H) onto M. Then $\tau \Phi$ is an Ad $\mathcal{U}M$ -invariant state on B(H). $\mathcal{N}A$ is obviously contained in $\mathcal{U}M$ and so is \tilde{A} in B(H).

Remark 2.26. When $A \subset M$ is an amenable Cartan subalgebra and e is a projection in A, the Cartan subalgebra $A_e \subset M_e$ is also amenable.

We are going to complete the proof of Theorem 2.24 by showing $(1) \Rightarrow (2)$.

Lemma 2.27. Let ϕ be a measure preserving partial Borel isomorphism on a standard probability space (X, μ) . Let E_0 denote the fixed point set $X^{\phi} = \{x \in \text{dom } \phi : \phi x = x\}$. There exist Borel sets B_1, B_2, B_3 of X satisfying $X = \coprod_{0 \le i \le 3} E_i$ and $\phi E_i \cap E_i$ is null for i > 0.

Proof. Take E_1 to be a Borel set with a maximal measure which satisfies $\phi E_1 \cap E_1 = \emptyset$. Put $E_2 = \phi E_1$. Then $\phi E_2 \cap E_2 = \emptyset$ by the injectivity of ϕ . Finally, put $E_3 = \mathbb{C}(\bigcup_{0 \le i \le 2} E_i)$. Then $\phi E_3 \cap E_3$ is null by the maximality of E_1 .

Corollary 2.28. For any finite set \mathscr{F} of $\mathcal{N}^p A$, there exist projections q_1, \ldots, q_m of A $(m = 4^{|\mathscr{F}|})$ satisfying $\sum q_k = 1$ and that $q_k v q_k$ is either 0 or in $\mathcal{U}A_{q_k}$ for any $v \in \mathscr{F}$.

Lemma 2.29. (Dye) For any finite subset $\mathscr{F} \subset \mathcal{N}A$ and $\epsilon > 0$, there exists $a \in A_+$ with $\operatorname{Tr}(a) = 1$ and $\sum_{u \in \mathscr{F}} \|uau^* - a\|_{1,\operatorname{Tr}} < \epsilon$. (Here, $\|x\|_{1,\operatorname{Tr}} = \operatorname{Tr}(|x|)$.)

Proof. Let $m: \tilde{A} \to \mathbb{C}$ be an Ad $\mathcal{N}A$ -invariant state. Since L^1 is w^{*}-dense in $(L^{\infty})^*$, there exists a net $a_i \in \tilde{A}_+$ satisfying $\operatorname{Tr}(a_i) = 1$ and $\operatorname{Tr}(a_i x) \to m(x)$ for any $x \in \tilde{A}$. Then, for any $u \in \mathcal{N}A$ and $x \in \tilde{A}$

 $Tr((ua_iu^* - a_i)x) = Tr(a_iu^*xu) - Tr(a_ix) \to m(u^*xu) - m(x) = 0.$

Thus $ua_iu^* - a_i$ is weakly convergent to 0. By Hahn-Banach's theorem, by taking the convex closure of the sets $\{ua_iu^* - a_i : k < i\}$, we find a sequence $(b_i)_i$ as convex combinations of the a_i satisfying $\|ub_iu^* - b_i\|_{1,\mathrm{Tr}} \to 0$ uniformly for $u \in \mathscr{F}$. \Box

Lemma 2.30. (Namioka) Let \mathscr{F} , ϵ be as above. There exists a projection p of \tilde{A} satisfying $\operatorname{Tr}(p) < \infty$ and $\sum_{u \in \mathscr{F}} \|upu^* - p\|_{2,\operatorname{Tr}}^2 < \epsilon \|p\|_{2,\operatorname{Tr}}^2$.

Proof. Let $a \in A_+$ be an element given by Lemma 2.29. For each r > 0 put $P_r = \chi_{(r,\infty)}(a)$. We have

$$\|uau^* - a\|_{1,\mathrm{Tr}} = \int_0^\infty \|uP_r u^* - P_r\|_{1,\mathrm{Tr}} \, dr \qquad 1 = \|a\|_{1,\mathrm{Tr}} = \int_0^\infty \|P_r\|_{1,\mathrm{Tr}} \, dr.$$

Hence

$$\int_0^\infty \sum_{u \in \mathscr{F}} \left\| u P_r u^* - P_r \right\|_{1,\mathrm{Tr}} dr < \epsilon \int_0^\infty \left\| P_r \right\|_{1,\mathrm{Tr}} dr.$$

Thus there exists r such that $p = P_r$ satisfies $\sum \|upu^* - p\|_{1,\mathrm{Tr}} < \epsilon \|p\|_{1,\mathrm{Tr}}$. Since the summands are differences of projections, $\|-\|_{1,\mathrm{Tr}}$ is approximately equal to $\|-\|_{2,\mathrm{Tr}}^2$.

Lemma 2.31. (Local AFD approximation by Popa) Let \mathscr{F} , ϵ be as above. There exists a finite dimensional subalgebra $B \subset M$ with matrix units in $\mathcal{N}^p A$, satisfying $||E_B(eue) - (u - e^{\perp}ue^{\perp})||_2^2 < \epsilon ||e||_2^2$ for every $u \in \mathscr{F}$, where e denotes the multiplicative unit of B and E_B the conditional expectation $eMe \to B$.

Proof. We may assume $1 \in \mathscr{F}$. Take $p \in A_+$ as in Lemma 2.30. Since $\operatorname{Tr} p < \infty$, we may assume that p can be written as $\sum_{i=1}^{n} v_i e_A v_i^*$ for $v_i \in \mathcal{N}^p A$. By Corollary 2.28, there exist projections $(q_k)_k$ in A with $\sum q_k = 1$ and each $q_k v_i^* u v_j q_k$ is either 0 or is in $\mathcal{U}(Aq_k)$ for $1 \leq i, j \leq n, u \in \mathscr{F}$. Taking finer partition if necessary, we deduce that dist $(q_k v_i^* u v_j q_k, \mathbb{C} q_k) < \sqrt{\epsilon/n}$.

On the other hand,

$$\sum_{u \in \mathscr{F}, k} \|(upu^* - p)Jq_k J\|_{2, \mathrm{Tr}}^2 = \sum_{u \in \mathscr{F}} \|upu^* - p\|_{2, \mathrm{Tr}}^2 < \epsilon \|p\|_{2, \mathrm{Tr}}^2 = \epsilon \sum_k \|pJq_k J\|_{2, \mathrm{Tr}}^2.$$

Hence for some $k, q = q_k$ satisfies $\sum ||(upu^* - p)JqJ||^2 \le \epsilon ||pJqJ||^2$. By $pJqJ = \sum v_i e_A JqJv_i^* = \sum v_i qe_A v_i^*$ since A is commutative, replacing v_i by $v_i q$, we may assume $v_i^* v_j = \delta_{i,j} q$ and pJqJ = p. (Note that $p = \sum v_i e_A v_i^*$ is a projection, which means that the ranges of v_i are mutually orthogonal.) This way we obtain $\sum \|upu^* - p\|^2 \leq \epsilon \|p\|^2$, each $v_i uv_j^* \in A_q$ is close to a

constant z_{ij} by $\sqrt{\epsilon/n}$, and $(v_i)_i$ is a matrix unit in A_q . Put $e = \sum v_i v_i^*$. Thus,

$$||p||_{2,\mathrm{Tr}}^2 = \mathrm{Tr}(\sum v_i e_A v_i^*) = \tau(\sum v_i v_i^*) = ||e||_{\tau}^2.$$

Consequently,

$$\|upu^* - p\|_{2,\mathrm{Tr}}^2 = 2\,\mathrm{Tr}\,p - 2\,\mathrm{Tr}(upu^*p) = 2\tau(e) - 2\,\mathrm{Tr}(\sum uv_i e_A v_i^* u^* v_j e_A v_j)$$

= $2\tau(e) - 2\tau(\sum uv_i v_i^* u^* v_j v_j^*) = 2\tau(e) - 2\tau(ueu^*e)$
= $\|ueu^* - e\|_{2,\tau}^2$.

Hence $\sum_{u \in \mathscr{F}} \|ue - eu\|_2^2 < \epsilon \|e\|_2^2$. Now $eue = \sum v_i v_i^* uv_j v_j^* \approx \sum z_{ij} v_i v_j^* \approx \epsilon \|e\|^2$ in $\|-\|_{2,\tau}^2$. Hence

$$\|eue - E_B(eue)\|_{2,\tau}^2 < \epsilon \|e\|_{2,\tau}^2 \qquad \|E_B(eue) - (u - e^{\perp}ue^{\perp})\|_{2,\tau}^2 < 2\epsilon \|e\|_{2,\tau}^2.$$

When we have a family (B_i) of mutually orthogonal finite dimensional algebras satisfying the assertion of the lemma, $e = \sum 1_{B_i}$ satisfies

$$\left\| E_{\oplus B_i}(eue) - (u - e^{\perp}ue^{\perp}) \right\|_{2,\tau}^2 < 2\epsilon \left\| e \right\|_{2,\tau}^2.$$

Lemma 2.32. In the notation of Lemma 2.31, e = 1.

Proof. Otherwise we can apply Lemma 2.31 to $A_{e^{\perp}} \subset M_{e^{\perp}}$ and $\mathscr{F}' = e^{\perp} \mathscr{F} e^{\perp}$, to obtain a finite dimensional algebra $B_0 \subset M_{e^{\perp}}$ satisfying the assertion of Lemma 2.31. Use the Pythagorean equality.

Proof of (1) \Rightarrow (2): Take B_1, \ldots, B_m satisfying $\|\sum_m \mathbf{1}_{B_i}\|_2^2 > 1 - \epsilon$. Put $B = \oplus_i B_i \oplus \mathbb{C}(\sum \mathbf{1}_{B_i})^{\perp}$. Then we have $\|E_B(u) - u\|_2^2 < 3\epsilon$ for $u \in \mathscr{F}$.

3. L^2 -Betti numbers

3.1. Introduction. Let $\mathfrak{F}(\Omega, X)$ denote the set of the mappings of a set Ω into another set X. Let Γ be a discrete group, λ the left regular representation of Γ on $\ell_2\Gamma$. We have the "standard complex" of right Γ modules

$$0 \longrightarrow \ell_2 \Gamma \xrightarrow{\partial} \mathfrak{F}(\Gamma, \ell_2 \Gamma) \xrightarrow{\partial} \mathfrak{F}(\Gamma^2, \ell_2 \Gamma) \longrightarrow \cdots$$

given by

$$\partial(f)(s_1, \dots, s_{n+1}) = \lambda(s_1)f(s_2, \dots, s_{n+1}) + \sum_{1 \le j \le n} (-1)^j f(s_1, \dots, s_j s_{j+1}, \dots, s_{n+1}) + (-1)^{n+1} f(s_1, \dots, s_n).$$

Conceptually, the above complex can be regarded as $\operatorname{Hom}_{\mathbb{C}\Gamma}(P_*, \mathbb{C}\Gamma\ell_2\Gamma)$ where P_* denotes the standard free resolution of the trivial left Γ -module \mathbb{C} . For each $n \in \mathbb{N}$, P_n is the vector space with basis Γ^{n+1} as a vector space over \mathbb{C} . Since Γ^{n+1} is a left Γ -set by $s.(s_0,\ldots,s_n) = (s.s_0,s_1,\ldots,s_n)$, P_n has the canonically induced left action of Γ .

Let $H_i(\Gamma, \ell_2\Gamma)$ denote the *i*-th (co)homology group of this complex. Note that this complex consists of $R\Gamma$ modules given by the action on $\ell_2\Gamma$, with boundary maps being $R\Gamma$ -homomorphisms. The space of 1-cocycles

$$Z_1 = \{ b \in \mathfrak{F}(\Gamma, \ell_2 \Gamma) : b(st) = b(s) + \lambda(s)b(t) \}$$

is identified with the space of the derivations from Γ to $\ell_2\Gamma$ with respect to the trivial right action. When $b \in \mathbb{Z}_1$ the map

$$s \mapsto \left(\begin{array}{cc} \lambda(s) & b(s) \\ 0 & 1 \end{array} \right)$$

of Γ into $B(\ell_2 \Gamma \oplus \mathbb{C})$ becomes multiplicative. On the other hand the space of 1-coboundaries

$$B_1 = \{ b \in \mathfrak{F}(\Gamma, \ell_2 \Gamma) : \exists f \in \ell_2 \Gamma, b(s) = \lambda(s)f - f \}$$

is identified with the space of the inner derivations. Note that for any $b \in Z_1$, there is a function $f \in \mathfrak{F}(\Gamma, \mathbb{C})$ satisfying $b(s) = \lambda(s)f - f$ if we do not require the square summability of f. Indeed, a vector system $(b(s))_{s\in\Gamma}$ is a derivation if and only if we have $\langle b(s), \delta_t \rangle = \langle b(st) - b(t), \delta_e \rangle$ for any $s, t \in \Gamma$, and in such a case we may put $f(s) = \langle b(s), \delta_s \rangle$ to obtain $b(s) = \lambda(s)f - f$. Remark 3.1. The 0-th homology group $H_0 = Z_0$ is the space of the Γ -invariant vectors in $\ell_2\Gamma$. Thus this becomes the 0-module if and only if Γ is infinite.

In the following we assume that Γ admits a finite generating set \mathscr{S} . Let $D\Gamma$ denote the space Z_1 of the derivations, $\operatorname{Inn} D\Gamma$ the space B_1 of the inner derivations. Let $\mathscr{O}_{\mathscr{S}}$ denote the mapping $b \mapsto (b(s))_{s \in \mathscr{S}}$ of $D\Gamma$ into $\bigoplus_{\mathscr{S}} \ell_2 \Gamma$. This is an injective $R\Gamma$ -module map. Note that the range of $\mathscr{O}_{\mathscr{S}}$ is closed. Indeed, $(f(s))_{s \in \mathscr{S}}$ is in ran $\mathscr{O}_{\mathscr{S}}$ if and only if

$$f(s_1) + \lambda(s_1)f(s_2) + \dots + \lambda(s_1 \cdots s_{n-1})f(s_n) = 0$$

holds for each relation $s_1 \cdots s_n = e$ among elements of \mathscr{S} .

A sequence $(f_n)_{n \in \mathbb{N}}$ of unit vectors is said to be an approximate kernel of the restriction $\mathscr{O}_{\mathscr{S}}|_{\operatorname{Inn} D\Gamma}$ when $\lambda(s)f_n - f_n$ tends to zero (in norm) for any $s \in \mathscr{S}$. $\mathscr{O}_{\mathscr{S}}|_{\operatorname{Inn} D\Gamma}$ has an approximate kernel if and only if Γ is amenable. Thus $\mathscr{O}_{\mathscr{S}}(\operatorname{Inn} D\Gamma)$ is closed if and only if Γ is finite or non-amenable.

Let P, Q denote the orthogonal projections onto $\mathscr{O}_{\mathscr{S}}(D\Gamma)$ and $\mathscr{O}_{\mathscr{S}}(\operatorname{Inn} D\Gamma)$. These commute with the diagonal action of $R\Gamma$ on $\oplus_{\mathscr{S}}\ell_2\Gamma$, i.e. $P, Q \in M_{\mathscr{S}}L\Gamma$. We can measure them by the trace $\tilde{\tau} = \operatorname{Tr} \otimes \tau$. The first Betti number $\beta_1^{(2)} = \dim_{L\Gamma} H_1(\Gamma, \ell_2)$ is equal to the difference $\tilde{\tau}(P) - \tilde{\tau}(Q)$.

Example 3.2. When Γ is a finite group, $\beta_0^{(2)} = \frac{1}{|\Gamma|}$ while $\beta_i^{(2)} = 0$ for 0 < i because any $\mathbb{C}\Gamma$ module is projective. On the other hand when Γ is equal to the free group \mathbb{F}_n generated by a set \mathscr{S} consisting of n elements, ran $\mathscr{O}_{\mathscr{S}} = \bigoplus_{\mathscr{S}} \ell_2 \Gamma$ and $\beta_1^{(2)} = n - 1$.

We omit the injection $\mathscr{O}_{\mathscr{S}}$ and identify $D\Gamma$ with a subspace of $\oplus_{\mathscr{S}}\ell_2\Gamma$. Thus $\partial^0: \ell_2\Gamma \to \mathfrak{F}(\Gamma, \ell_2\Gamma)$ factors through $\oplus_{\mathscr{S}}\ell_2\Gamma$ and $\partial^0: \ell_2\Gamma \to \oplus_{\mathscr{S}}\ell_2\Gamma$ is written as $f \mapsto (\lambda(s)f - f)_{s \in \mathscr{S}}$. Let $\epsilon_1^{(2)}: \oplus_{\mathscr{S}}\ell_2\Gamma \to \ell_2\Gamma$ denote the adjoint of ∂ . Thus $\epsilon_1^{(2)}$ is expressed as

Let $\epsilon_1^{(2)}$: $\oplus_{\mathscr{S}} \ell_2 \Gamma \to \ell_2 \Gamma$ denote the adjoint of ∂ . Thus $\epsilon_1^{(2)}$ is expressed as $(\xi_s)_{s \in \mathscr{S}} \mapsto \sum_{s \in \mathscr{S}} (\lambda(s^{-1}) - 1)\xi_s$ and the orthogonal complement of ker $\epsilon_1^{(2)}$ is equal to the closure of ran $\partial = \operatorname{Inn} D\Gamma$.

Proposition 3.3. When we identify $\mathbb{C}\Gamma$ with the space of vectors with finite support in $\ell_2\Gamma$, we have $D\Gamma = (\ker \epsilon_1^{(2)} \cap \bigoplus_{\mathscr{S}} \mathbb{C}\Gamma)^{\perp}$.

Proof. The space $\mathbb{C}\Gamma$ has $\mathfrak{F}(\Gamma, \mathbb{C})$ as its algebraic dual. A vector system $b \in \bigoplus_{\mathscr{S}} \ell_2$ is in $D\Gamma$ if and only if there is an $f \in \mathfrak{F}(\Gamma, \mathbb{C})$ such that $b(s) = \lambda(s)f - f$. The latter implies

$$\forall \xi \in \ker \epsilon_1^{(2)} \cap \oplus_{\mathscr{S}} \mathbb{C}\Gamma, \langle \xi, b \rangle = \sum_s \langle \xi(s), b(s) \rangle = \sum_s \langle (\lambda(s^{-1}) - 1)\xi(s), f \rangle = 0.$$

Conversely, when $(b(s))_{s \in \mathscr{S}}$ is orthogonal to ker $\epsilon_1^{(2)} \cap \bigoplus_{\mathscr{S}} \mathbb{C}\Gamma$, the functional $\langle b, - \rangle$ on $\bigoplus_{\mathscr{S}} \mathbb{C}\Gamma$ is induced by a functional f on the kernel of the map $\mathbb{C}\Gamma \to \mathbb{C}$. This fcan be extended to a linear map on the whole $\mathbb{C}\Gamma$, and we have $b(s) = \lambda(s)f - f$, i.e. $b \in D\Gamma$.

Remark 3.4. The *i*-th cohomology group $H^i(\Gamma, \ell_2\Gamma)$ is dimension isomorphic to $\operatorname{Tor}_i^{\mathbb{C}\Gamma}(\mathbb{C}, \ell_2\Gamma)$. This is seen by considering the exact functors $E \to E^*$ on the category of $L\Gamma$ -modules and that of $L\Gamma$ -bimodules, where E^* denotes the dual module of the weak closure of E. We have functors $(A, B) \to A \otimes_{\mathbb{C}\Gamma} B$ and $(A, B) \to$

 $\operatorname{Hom}_{\mathbb{C}\Gamma}(A, B)$ of $\mathbb{C}\Gamma$ -mod $\times L\Gamma$ -bimod into $L\Gamma$ -mod. Then the functor equivalence $(A \otimes_{\mathbb{C}\Gamma} B)^* \simeq \operatorname{Hom}_{\mathbb{C}\Gamma}(A, B^*)$ up to dimension implies the dimension equivalence between the derived functors $\operatorname{Tor}_p(A, B)^* \simeq \operatorname{Ext}^p(A, B^*)$. The case $A = \mathbb{C}$ and $B = \ell_2 \Gamma$ describes the desired isomorphism.

For example, we have a flat resolution P of the trivial Γ -module \mathbb{C} with $P_0 = \mathbb{C}\Gamma$ and $P_1 = \mathbb{C}\Gamma \otimes_{\mathbb{C}} \mathbb{C}\mathscr{S}$, with $d_1(a \otimes b) = ab - a$. The first torsion group $\operatorname{Tor}_1^{\mathbb{C}\Gamma}(\ell_2\Gamma, \mathbb{C})$ is by definition the quotient $\ker(id_{\ell_2\Gamma} \otimes d_1)/\ell_2\Gamma \otimes \ker d_1$. Now $id_{\ell_2\Gamma} \otimes d_1 = \epsilon_1^{(2)}$ implies $\ker(id_{\ell_2\Gamma} \otimes d_1) = \operatorname{Inn} D\Gamma^{\perp}$ while $\ell_2\Gamma \otimes \ker d_1 = \ker \epsilon_1^{(2)} \cap \oplus_{\mathscr{S}}\mathbb{C}\Gamma$ implies $\ell_2\Gamma \otimes \ker d_1 = D\Gamma^{\perp}$.

3.2. Operators affiliated to a finite von Neumann algebra. Let (M, τ) be a finite von Neumann algebra with a faithful normal tracial state (τ is unique if M is a factor), L^2M the induced Hilbert M-M module. For each $n \in \mathbb{N}$ put $\tilde{\tau} = \tau \otimes \text{Tr}$ on $M \otimes M_n \mathbb{C} \simeq M_n M$.

Definition 3.5. Let H be a left Hilbert module over M. A densely defined closed operator T on H is said to be affiliated to M, written as $T \sim M$, when we have uT = Tu for any $u \in \mathcal{U}(M')$. Here the equality entails the agreement of the domains, i.e. $u \operatorname{dom} T = \operatorname{dom} T$.

Remark 3.6. An operator T is affiliated to M if and only if for the polar decomposition T = v|T| the partial isometry v and the spectral projections of |T| are in M. Note that in such cases τ takes the same value on the left support $l(T) = vv^*$ of Tand the right support $r(T) = v^*v$.

We consider the case $H = L^2 M$. Suppose $T \sim M$. It is said to be square integrable when $\hat{1} \in \text{dom } T$. This condition is equivalent to

$$\tau(|T|^2) = ||T\hat{1}||^2 = \int t^2 d\tau(E) < \infty$$

for the spectral measure $T = \int t dE$ of T. For each $\xi \in L^2 M$ let L°_{ξ} denote the unbounded operator defined by dom $L^{\circ}_{\xi} = \hat{M} \subset L^2 M$ and $L^{\circ}_{\xi} x = \xi x$.

Proposition 3.7. The operator $L_{\xi}^{\circ}x$ is closable and its closure L_{ξ} is affiliated to M. Moreover we have $L_{\xi}^{*} = L_{J\xi}$. If T is affiliated to M and square integrable, $T = L_{T\hat{1}}$.

Proof. We show the inclusion $L_{J\xi}^{\circ} \subset (L_{\xi}^{\circ})^*$. For any elements $x, y \in M$,

$$\langle L_{\xi}^{\circ}\hat{x}, \hat{y} \rangle = \langle \xi x, y \rangle = \langle J\hat{y}, J(\xi x) \rangle = \langle \hat{1}y^*, x^*J\xi \rangle = \langle \hat{x}, (J\xi)y \rangle.$$

On the other hand, when $u \in \mathcal{UR}_M$, $uL_{\xi}^{\circ} = L_{\xi}^{\circ}u$ implies $uL_{\xi} = L_{\xi}u$.

Next we show the inclusion $(L_{\xi})^* \subset L_{J\xi}$. Let $\eta \in \text{dom}(L_{\xi}^\circ)^*$. Consider the polar decomposition $L_{J\xi} = v|L_{J\xi}|$ and the spectral decomposition $|L_{J\xi}| = \int_0^\infty \lambda de_{\lambda}$. Then $e_{\lambda}v^*L_{J\xi} = e_{\lambda}|L_{J\xi}|$ is bounded (i.e. is in M_+) for any λ . By definition, $L_{J\xi}(y\hat{1}) = (J\xi)y$ for $y \in M$. Hence $e_{\lambda}v^*L_{J\xi}(y\hat{1}) = e_{\lambda}v^*((J\xi)y) = (e_{\lambda}v^*J\xi)y$. Putting y = 1, we obtain $e_{\lambda}v^*L_{J\xi}\hat{1} = e_{\lambda}v^*J\xi \in M.\hat{1}$ for any $\lambda > 0$. Thus, by definition of $(L_{\xi})^*$, we have

$$\langle (L_{\xi})^*\eta, (e_{\lambda}v^*)^*y\hat{1} \rangle = \langle \eta, L_{\xi}(e_{\lambda}v^*)^*y\hat{1} \rangle = \langle \eta, \xi(e_{\lambda}v^*)^*y \rangle = \langle \eta, Jy^*(e_{\lambda}v^*)J\xi \rangle$$

= $\langle \eta, Jy^*e_{\lambda}v^*L_{J\xi}\hat{1} \rangle$ (by using above)
= $\langle \eta, (e_{\lambda}v^*L_{J\xi})^*y\hat{1} \rangle.$

Hence $e_{\lambda}v^*(L_{\xi})^*\eta = e_{\lambda}v^*L_{J_{\xi}}\eta = |L_{J_{\xi}}|e_{\lambda}\eta$ for any $\lambda > 0$. By letting $\lambda \to \infty$, $e_{\lambda}\eta \to \eta$ and $|L_{J_{\xi}}|e_{\lambda}\eta \to v^*(L_{\xi})^*\eta$. Since $|L_{J_{\xi}}|$ is a closed operator, $\eta \in \operatorname{dom}(|L_{J_{\xi}}|) = \operatorname{dom}(L_{J_{\xi}})$. Hence $(L_{\xi})^* \subset L_{J_{\xi}}$ and $|L_{J_{\xi}}| = v^*(L_{\xi})^*$.

Finally, let us prove the last part. Let $T \sim M$ with the polar decomposition v|T| = T. Note that $\hat{v^*} = \hat{1}v^* \in \text{dom }T$, $\hat{1} \in \text{dom }T^*$, $T^*\hat{1} = |T|\hat{v^*}$. Put $\xi = T\hat{1}, \eta = T^*\hat{1}$. Since $T \sim M$, $L^\circ_{\xi} \subset T$, $L^\circ_{\eta} \subset T^*$ and we obtain $L_{\xi} \subset T \subset L_{J\eta}$.

3.3. Projective modules over a finite von Neumann algebra. Let $m, n \in \mathbb{N}$. We have an isomorphism $Mor(M^{\oplus m}, M^{\oplus n}) = M_{m,n}(M)$ by multiplication of matrices on column vectors.

Definition 3.8. An left M-module V is said to be finitely generated projective module when it is a projective object in the category of the M-modules and has a finite set generating itself.

Remark 3.9. Any finitely projective M module is isomorphic to some $M^{\oplus m}.P$ for a natural number m and an idempotent matrix P in $M_m M$.

Lemma 3.10. In the above we may replace P with an orthogonal projection $P^* = P$ without changing the value of $\tilde{\tau}(P)$.

Proof. Let P_0 be the right support of P. $P(P - P_0) = 0$ implies $P_0(P - P_0) = 0$. Thus $S = \text{Id} + (P - P_0)$ is invertible. With respect to the orthogonal decomposition $\text{Id} = P_0 \oplus P_0^{\perp}$, these operators are expressed as

$$P_0 = \begin{pmatrix} \operatorname{Id} & 0\\ 0 & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} \operatorname{Id} & 0\\ ? & 0 \end{pmatrix}, \qquad S = \begin{pmatrix} \operatorname{Id} & 0\\ ? & \operatorname{Id} \end{pmatrix}.$$

The operator $SP_0 = SP_0S^{-1}$ is self adjoint.

Remark 3.11. When $M^{\oplus m}P$ and $M^{\oplus n}Q$ are isomorphic, $\tilde{\tau}(P) = \tilde{\tau}(Q)$.

Definition 3.12. For each finitely projective *M*-module *V* isomorphic to $M^{\oplus m}P$ where *P* is a orthogonal projection in $M_m M$, $\dim_M V - \tilde{\tau}(P)$ is called the τ -dimension

Lemma 3.13. Let V be a submodule of $M^{\oplus n}$. When V is closed $M^{\oplus n}$ with respect to the L^2 -norm (V is weakly closed), V is finitely generated and projective.

Proof. The L^2 completion $\overline{V}^{\|\cdot\|_2} \subset L^2 M^{\oplus n}$ is written as $L^2 M^{\oplus} P$ for an orthogonal projection P. Then V is equal to $M^{\oplus n} P$.

Lemma 3.14. For each $T \in Mor(M^{\oplus m}, M^{\oplus n})$, its kernel and range are finitely generated projective modules.

Proof. Obviously the kernel of T is weakly closed in $M^{\oplus m}$. On the other hand for the projection P such that ker $T = M^{\oplus m}P$, T induces an isomorphism $MP^{\perp} \rightarrow \operatorname{ran} T$.

Remark 3.15. When a submodule $V \subset M^{\oplus m}$ is finitely generated, V is projective. In fact, $V = M^{\oplus m} A$ for some $A \in M_{m,n}(M)$. Thus we have

$$V \simeq M^{\oplus n} l(A) \simeq M^{\oplus m} r(A) \simeq \overline{V}.$$

Hence $\dim_M V = \dim_M \bar{V}$.

Remark 3.16. If $W \subset V$ are finitely generated projective modules, $\dim_M W \leq \dim_M V$.

Definition 3.17. Let V be an M-module. Put

 $\dim_M V = \sup \{\dim_M W : W \subset V, W \text{ is projective}\} \in [0, \infty].$

Remark 3.18. Note that the above definition of \dim_M is compatible with the previous one for finitely generated projective modules. In general, $W \subset V$ implies $\dim_M W \leq \dim_M V$ and $(V_i)_{i \in I} \uparrow V$ $(V = \bigcup_{i \in I} V_i)$ implies $\dim_M V = \lim_i \dim_M V_i$.

Theorem 3.19. (Lück [6]) When

 $0 \longrightarrow V_0 \xrightarrow{\iota} V_1 \xrightarrow{\pi} V_2 \longrightarrow 0$

is exact, we have $\dim_M V_1 = \dim_M V_0 + \dim_M V_2$.

Proof. When $W \subset V_2$ is finitely generated and projective, $\pi^{-1}W$ is identified to $W \oplus \iota V_0$. Hence dim $V_1 \ge \dim V_0 + \dim V_2$. Conversely, let $W \subset V_1$ be finitely generated projective. The weak closure $\iota V_0 \cap W$ is closed in a finite free module, hence is projective. From the sequence $\iota V_0 \cap W \to W \to W/\iota V_0 \cap W$, we have dim $W = \dim \iota V_0 \cap W + \dim W/\iota V_0 \cap W$. Note that there is a natural surjection $W/\iota V_0 \cap W \to W/\iota V_0 \cap W$. By the first part of the argument this implies the dimension inequality dim $\iota V_0 \cap W \le \dim \iota V_0 \cap W$. On the other hand $W/\iota V_0 \cap W$ is identified to a submodule of V_2 .

Corollary 3.20. Let V be a finitely generated M-module. We have a decomposition $V = V_p \oplus V_t$ where V_p is projective and dim $V = \dim V_p$. (Hence dim $V_t = 0$.)

Proof. We have a surjection $T: M^{\oplus m} \to V$. Note that ker T may not be closed since we have no matrix presentation of T. Nonetheless, $V \simeq M^{\oplus m} / \ker T$ and the next lemma imply that $V_p = M^{\oplus m} / \ker T$ satisfies

$$\dim V = m - \dim \ker T = m - \dim \ker T = \dim V_p.$$

Lemma 3.21. Let W be a subset of a finite free module $M^{\oplus m}$. We have dim $W = \dim \overline{W}$.

Proof. Put $L = \{A \in M_m M : M^{\oplus}.A \subset W\}$. This is a left ideal of $M_m M$. We get a right approximate identity A_i of L. For the orthogonal projection P such that $\overline{W} = M^{\oplus m}P$, the right support $r(A_i \text{ converges to } P \text{ in strong operator topology})$ (for any normal representation, thus, in the ultrastrong topology). Thus for any $\epsilon > 0, P_{\epsilon,i} - \chi_{[\epsilon,1]}(A_i^*A_i)$ is in L and converges to P in the ultrastrong operator topology.

Proposition 3.22. For any $L\Gamma$ -module V, dim V = 0 is equivalent to $\forall \xi \in V, \epsilon > 0, \exists P \in \operatorname{Proj} M : \tau P > 1 - \epsilon$ and $P\xi = 0$.

Proof. \Rightarrow : Let $\xi \in V$. Consider the exact sequence $0 \to L \to M \to M.\xi \to 0$ where L is the annihilator of ξ . dim $L = \dim M$ implies the existence of projections P_i convergent to 1 in the ultrastrong topology.

 $\Leftarrow: \text{ If } V \supset M.Q, P \text{ satisfies } \tau P > 1 - \tau Q \text{ and } PQ \neq 0.$

Definition 3.23. A homomorphism $\phi: V \to W$ of *L*-modules is said to be a dimension isomorphism when $\dim_M \ker \phi = \dim_M \operatorname{cok} \phi = 0$.

Remark 3.24. The torsion N-modules $\mathcal{T} = \{V : \dim_N V = 0\}$ form a Serre subcategory of N-mod. Analyzing N-modules up to dimension isomorphisms amounts to considering the localization N-mod/ \mathcal{T} of N-mod by \mathcal{T} . Thus, in general, when a morphism $V_* \to W_*$ of complexes is a dimension isomorphism at each degree, the induced homomorphism between the cohomology groups is also an dimension isomorphism because it factors through an isomorphism in the localization category $\mathcal{C}^*(N-\text{mod}/\mathcal{T})$ of the N-module complex category over the torsion module category.

Lemma 3.25. The standard inclusion $M \to L^2(M)$ is a dimension isomorphism.

Proof. Let $\xi \in L^2 M$. We get the corresponding square integrable operator affiliated with M. Put $P_n = \chi_{[0,n]}(\xi\xi^*) \in \operatorname{Proj} M$. Then $P_n\xi \in M$ and $P_n \to 1$, thus $P_n[\xi] = 0$ in the quotient L^2M/M .

When H is a Hilbert M-module, i.e. a normal representation of M on H, $H \simeq L^2 M^{\oplus n} P$ for some cardinal n and an idempotent P in $M_n M$.

Lemma 3.26. In the above notation, $\dim_M H = \tilde{\tau}(P)$.

Proof. We have the following commutative diagram

The cokernel in the lower row has dimension 0, thus so does the one in the upper row. $\hfill \Box$

Definition 3.27. $\beta_n^{(2)}(\Gamma) = \dim_{L\Gamma} \operatorname{Tor}_n^{\mathbb{C}\Gamma}(L\Gamma, \mathbb{C}_{\operatorname{triv}})$ is called the *n*-th L^2 -Betti number of Γ .

Remark 3.28. $\beta_n^{(2)}(\Gamma)$ is equal to $\dim_{L\Gamma} \operatorname{Tor}_n^{\Gamma\Gamma}(\ell_2\Gamma, \mathbb{C}_{\operatorname{triv}}).$

Example 3.29. $\beta_n^{(2)}(\mathbb{F}_r) = r - 1$ when n = 2, 0 otherwise. This is seen as follows: let g_1, \ldots, g_r be the standard generators of \mathbb{F}_r . A free resolution of the trivial $\mathbb{C}[\mathbb{F}_r]$ -module \mathbb{C} is given by

$$0 \longrightarrow (\mathbb{C}[\mathbb{F}_r])^r \xrightarrow[d_1]{} \mathbb{C}[\mathbb{F}_r] \xrightarrow[\alpha]{} \mathbb{C}$$

where $d_1: (\xi_k)_{k=1}^r \mapsto \sum (\lambda_{g_k}^* - 1)\xi_k$ and α is the augmentation map. Now, d_1 is injective: let $\chi_j \in \ell_{\infty} \mathbb{F}_r$ be the characteristic function of $\mathbb{F}_r g_j$. Then $(\lambda_{g_k} - 1)\chi_j = \delta_{j,k}\delta_e$ and $(\xi_k)_k \in \ker d_1$ implies

$$0 = \langle \sum_{k} (\lambda_{g_k}^* - 1) \xi_k, \chi_j \rangle = \sum_{k} \langle \xi_k, (\lambda_{g_k} - 1) \chi_j \rangle = \xi_j(e).$$

Replacing χ_j by $\chi_j^t = \chi_j(-t^{-1})$ for $t \in \Gamma$, we have $\xi_j(t) = 0$ for any j and t. Thus, the torsion group is the cohomology of the complex

$$0 \longrightarrow (L^2 \mathbb{F}_r)^r \xrightarrow[d_1]{d_1} L^2 \mathbb{F}_r \longrightarrow 0.$$

Let R be a ring. Recall that a right R-module N is flat if and only if the tensor product functor $N \otimes_R -$ preserves injections $V \hookrightarrow F$ where F is a finitely generated free module. The latter holds if and only if $N \otimes_R -$ preserves the injectivity of inclusion $I \hookrightarrow R$ of the left ideals.

Theorem 3.30. Let $M \hookrightarrow N$ be a trace preserving inclusion of finite von Neumann algebras. Then N is flat over M and $\dim_N N \otimes_M V = \dim_M V$ for any M-module V.

Proof. Recall that any finitely generated submodule of a free M-module is projective. (That is, M is semihereditary.) To see this, let V be a finitely generated submodule of a finitely generated free module $M^{\oplus m}$. $V \simeq M^{\oplus n}A$ for some (m, n)-matrix A. Then V is projective, being isomorphic to $M^{\oplus}.l(A)$. Now,

$$N \otimes V \simeq N^{\oplus n} . l(A) \simeq N^{\oplus m} A \hookrightarrow N^{\oplus} \simeq N \otimes M^{\oplus m}.$$

Thence N is flat over M.

Let V be a finitely generated M-module. Suppose we had an inclusion $\Phi: M^{\oplus m}.P \hookrightarrow V$ of a projective module. Then $N^{\oplus m}.P \hookrightarrow N \otimes V$ by the flatness of N. This shows that $\dim_N N \otimes_M V \leq \dim_M V$. On the other hand, for any surjection $\pi M^{\oplus n} \Rightarrow V$, the induced homomorphism $\pi_*: N^{\oplus n} \to N \otimes V$ is surjective and $\dim N \otimes V = n - \dim \pi_*$, thus $\dim N \otimes V \leq \dim V$. \Box

3.4. Application to orbit equivalence.

Notation. Let $\alpha \colon \Gamma \curvearrowright (X, \mu)$ be a probability measure preserving essentially free action. Put $A = L^{\infty}(X, \mu), M = L\Gamma, N = L^{\infty}(X, \mu) \rtimes \Gamma = vN(\mathscr{R}_{\Gamma \curvearrowright X})$. Let R_0 denote the linear span $alg(L^{\infty}(X, \mu), \Gamma)$ of $f\lambda(s)$ for the $f \in A, s \in \Gamma$. Let R denote the linear span alg(N(A)) of fv_{ϕ} for the $f \in A, \phi \in [\mathscr{R}]$.

Remark 3.31. R_0 is free over $\mathbb{C}\Gamma$ and $\mathbb{R}_0 \otimes_{\mathbb{C}\Gamma} \mathbb{C} \simeq L^{\infty}(X)$. The induced left R_0 structure on $L^{\infty}(X)$ is given by $\sum f_s \lambda_s$). $g = \sum f_s \alpha_s(g)$ thus $R_0 \otimes_{\mathbb{C}\Gamma} \mathbb{C} \simeq A$ and we have $\operatorname{Tor}^{R_0}_*(N, A) \simeq \operatorname{Tor}^{\mathbb{C}\Gamma}_*(N, \mathbb{C})$. The latter is isomorphic to $N \otimes_M \operatorname{Tor}^{\mathbb{C}\Gamma}_*(M, \mathbb{C})$ by the flatness of N. Note that $\dim_N N \otimes_M \operatorname{Tor}^{\mathbb{C}\Gamma}_n(M, \mathbb{C}) = \dim_M \operatorname{Tor}^{\mathbb{C}\Gamma}_n(M, \mathbb{C}) = \beta_n^{(2)}(\Gamma)$.

Our goal is to show the equality $\dim_N \operatorname{Tor}_n^{R_0}(N, A) = \dim_N \operatorname{Tor}_n^R(N, A)$. Note that the latter only depends on the orbit equivalence $\mathscr{R}_{\Gamma_{\mathcal{O}}}$.

Lemma 3.32. For any $x \in R$ and $\epsilon > 0$, there is a projection p in A such that $\tau p > \epsilon$ and $xp^{\perp} \in R_0$.

Proof. When x is of the form $v_{\phi}f$, the assertion is trivial by the expression $v_{\phi} = \sum \lambda(g_k)e_k$. The general case reduces o the above by $\tau(p \lor q) \le \tau p + \tau q$. \Box

For the time being let A denote an arbitrary finite von Neumann algebra.

Definition 3.33. Let V be a left A-module. For $\xi \in V$,

$$[\xi] = \inf \{\tau p : p \in \operatorname{Proj} A, p\xi - \xi\}$$

is called the rank norm of ξ .

Remark 3.34. [ξ] is subadditive and scalar invariant. $V_t = \{\xi : [\xi] = 0\}$ is the largest submodule with dim_A $V_t = 0$. Any A-module homomorphism $\phi : V \to W$ contracts [ξ]. Moreover for any $\eta \in \ker \phi$ and $\epsilon > 0$, there is an element $\xi \eta \in \phi^{-1} \eta$ such that $[\xi] \leq [\eta] + \epsilon$.

Definition 3.35. Let V be an A-module. Consider a metric on V defined by $d(\xi, \eta) = [\xi - \eta]$. Let C(V) denote the completion of V with respect to d.

Remark 3.36. C(V) admits an left action of A: the continuity with respect to d follows from $[a\xi] \leq \min[a], [\xi]: p\xi = \xi$ implies

$$ap\xi = l(ap)ap\xi - l(ap)a\xi \Rightarrow [a\xi] \le \tau(l(ap)) = \tau(r(ap))$$

C(V) contains V/V_t as a dense subspace.

Remark 3.37. $V \subset W$ is dense if and only if for any $\xi \in W$ and $\epsilon > 0$, there exists $p \in A$ such that $\tau p < \epsilon$ such that $p^{\perp} \xi \in V$, which, in turn, happens if and only if $\dim W/V = 0$.

Lemma 3.38. The functor $V \mapsto CV$ is exact.

Proof. Right exactness: consider an exact sequence $V_1 \to V_0 \to 0$. Let $\xi \in CV_0$, $(\xi_n)_{n \in \mathbb{N}} \subset V_0$ a sequence convergent to ξ . We may assume that $d(\xi, \xi_n) \leq 2^{-(n+1)}$. We can inductively lift (ξ_n) to (η_n) in V_1 such that $d(\eta_n, \eta_{n+1} \leq 2^{-n}$.

General exactness: let

$$V_2 \xrightarrow{g} V_1 \xrightarrow{f} V_0$$

be an exact sequence, ξ an element of ker C(f). Choose a sequence $(\xi_n)_n$ convergent to ξ . Then $f(\xi_n) \to C(f)(\xi) = 0$. This implies the existence of a sequence $(\eta_n)_n$, convergent to 0 and $f\eta_n = f\xi_n$. $\xi = \lim \xi_n - \eta n$ is in the closure of the image of g, which, by the right exactness of C, is equal to the image of C(g). Now we turn to the orbit equivalence situation: $A \subset R_0 \subset R \subset N$. We consider *A*-rank metric on R_0 -modules.

Lemma 3.39. When V is an R_0 (resp. R) module, CV admits an R_0 (resp. R) module structure.

Proof. If
$$x - \sum_{n=1}^{N} v_{\phi_n} f_n$$
, for any $\xi \in V$ we have the estimate $[x\xi] \le n[\xi]$. \Box

Lemma 3.40. When V is an R_0 module, CV admits an R-module structure.

Proof. Let $x \in R$, $(x_n)_n$ be a sequence in R_0 convergent to x. For any $\xi \in V$, $x_n \xi$ is A-rank convergent to $x\xi$.

Lemma 3.41. When V is a left R_0 -module. $N \otimes_{R_0} V \to N \otimes_{R_0} CV$ is a dimension isomorphism.

Proof. Suppose $x = \sum_{i} a_i \otimes \xi_i$ $(a_i \in N, \xi_i \in V)$ represents 0 in $N \otimes_{R_0} CV$. In the tensor product over \mathbb{C} ,

$$\sum a_i \otimes \xi_i = \sum (b_j v_j \otimes \eta_j - b_j \otimes v_j \eta_j)$$

for $b_j \in N, v_j \in R_0, \eta_j \in CV$. For each j, there is a projection p_j such that $\tau(p_j) \sim 0$ and $p_j^{\perp} \eta_j \in V$. Thus we get a representative of x given by

$$\sum (b_j v_j \otimes p_j \eta_j - b_j \otimes v_j p_j \eta_j) + \sum (b_j v_j \otimes p_j^{\perp} \eta_j - b_j \otimes v_j p_j^{\perp} \eta_j)$$

The second summand becomes 0 in $N \otimes_{R_0} V$. Now, choose the smallest projection p in N such that $pv_jp_j = v_jp_j, p_j \leq p$. Then $x = (1 \otimes p)x$ and $[x]_N \sim 0$. Hence $N \otimes V \to N \otimes CV$ is an isometry. When $\xi_n \in V$ converges to $\xi \in CV$, $a \otimes \xi_n$ converges to $a \otimes \xi$ in $[-]_N$.

Remark 3.42. For any *R*-module $W, N \otimes_{R_0} W \to N \otimes_R W$ is an dim_N-isomorphism.

Theorem 3.43. dim_N $\operatorname{Tor}_{n}^{R_{0}}(N, A) = \dim_{N} \operatorname{Tor}_{n}^{R}(N, A).$

Proof. Consider projective resolutions of $A: P_* \to A$ as an R_0 -module, $Q_* \to A$ as an R-module. We have morphisms $\phi_*: P_* \to Q_*$ and $\psi_*: Q_* \to CP_*$. Thus we get a commutative diagram

By the uniqueness of projective resolution up to homotopy, compositions of two homomorphisms $\psi_n \phi_n$ and $C \phi_n \psi_n$ are homotope to the standard inclusion isomorphisms.

Now, the standard inclusion $P_* \to CP_*$ induces a dim_N-isomorphism after applying the $N \otimes_{R_0}$ – functor by Lemma 3.41. Thus, $\mathrm{Id}_N \otimes \phi_*$: and $\mathrm{Id}_N \otimes \psi_*$ are inverse to each other via the identification of $N \otimes P_* \simeq N \otimes CP_*$ and $N \otimes Q_* \simeq N \otimes CQ_*$. Hence $\mathrm{Id}_N \otimes \phi_*$ induces a dimension isomorphism on cohomology groups. \Box

Corollary 3.44. Let $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ be essentially free probability measure preserving actions. If $\mathscr{R}_{\Gamma \curvearrowright X} \simeq \mathscr{R}_{\Lambda \curvearrowright Y}$, $\beta_n^{(2)}(\Gamma) = \beta_n^{(2)}(\Lambda)$.

Remark 3.45. Put $\beta_*^2(A, N) = \dim_N \operatorname{Tor}_*^R(N, A)$. For any nonzero projection p in $A, \beta_*^2(A, N) = \tau(p)\beta_*^2(pA, pNp)$.

4. Derivations on von Neumann Algebras

In the following we only consider normal Hilbert (bi)modules over von Neumann algebras. Examples of such modules include the identity bimodule L^2N and the coarse (M, N)-module $L^2M \otimes L^2N$.

Let Γ be a countable discrete group, (π, H_0) a unitary representation of Γ . A map $b: \Gamma \to H_0$ is said to be a derivation when it satisfies $b(st) = b(s) + \pi(s)b(t)$ i. e. a derivation for the (π, triv) -bimodule structure. A derivation b is said to be inner when there exists $\xi \in H_0$ such that $b(s) = \pi(s)\xi - \xi$. Put

 $H^1(\Gamma, \pi) = \{ \text{derivations} \} / \{ \text{inner derivations} \}.$

When b is a derivation, $\phi_r(s) = e^{-r ||b(s)||^2}$ for $r \ge 0$ determines a positive semidefinite semigroup. Our goal is to show that it extends to a semigroup $\tilde{\phi}_r \colon L\Gamma \to L\Gamma$ of τ preserving completely positive maps.

4.1. **Densely defined derivations.** Let M denote $L^2\Gamma$. Consider $H = M \otimes H_0$. A left action $M \to B(H)$ is defined by $\lambda(f) \mapsto \lambda \otimes \pi(f)$ (this is possible by the Fell absorption.) On the other hand we have a right action $M^o \to B(H)$ is defined by $\rho(g) \mapsto \rho(g) \otimes id$. Put $\delta(s) = \delta_s \otimes b(s) \in \ell_2 \Gamma \otimes H_0$. By

$$\delta(st) = \delta_{st} \otimes (b(s) + \pi(s)b(t)) = \rho \otimes 1(t^{-1})\delta(s) + \lambda \otimes \pi(s)\delta(t),$$

 δ extends to a (possibly unbounded) derivation $\mathbb{C}\Gamma \to H$ satisfying $\delta(xy) = x\delta(y) + \delta(x)y$.

Notation. Let (M, τ) be a finite von Neumann algebra with a faithful normal tracial state, \mathscr{D} a weak^{*}-dense *-subalgebra of M. Let H be a Hilbert bimodule over $M, \delta \colon M \to H$ a derivation defined on \mathscr{D} which is closable as a densely defined operator $L^2M \to H$. Let $\overline{\delta}$ denote its closure.

We are going to show that the domain of $\overline{\delta}$ is a *-subalgebra of $\mathscr{L}(H)$ and that $\overline{\delta}$ is a derivation.

Notation. Let $\|-\|_{\text{Lip}}$ denote the 1-Lipschitz norm:

$$||f||_{\text{Lip}} = \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}.$$

Let Lip_0 denote the space of 1-Lipschitz continuous functions which map 0 to 0.

For any $x \in L^2 M_{sa}$, regarded as a self adjoint unbounded operator on $L^2 M$, we can consider its functional calculus f(x).

Proposition 4.1. When $x, y \in L^2 M_{sa}$ and $f \in Lip_0$, the functional calculus f(x), f(y) is in $L^2 M$ and

$$||f(x) - f(y)||_2 \le ||f||_{\text{Lip}} ||x - y||_2.$$

Proof. For the spectral measure E(t) of $x, x = \int t dE(t)$ and $||x||_2^2 = \int |x|^2 d\tau E(T)$. Thus $||f(x)||_2^2 = \int |f(t)|^2 d\tau E(t) \le ||f||_{\text{Lip}} \int |t|^2 d\tau E(t)$ and f(x) is in $L^2 M$. For the second assertion, consider the bilinear map

$$C_0(\mathbb{R})^2 \ni (f,g) \mapsto \tau(f(x)g(x)) = \langle f(x)\hat{1}f(y), \hat{1} \rangle.$$

This defines a linear form $C_0(\mathbb{R} \times \mathbb{R}) \to \mathbb{C}$, i.e. $\tau(f(x)g(y)) = \int fgd\mu$ for some measure μ on $\mathbb{R} \times \mathbb{R}$. Thus, $\tau(|f(x) - f(y)|^2)$ is equal to

$$\int |f(s) - f(t)|^2 d\mu(s, t) \le \|f\|_{\text{Lip}}^2 \int |s - t|^2 d\mu(s, t) = \|f\|_{\text{Lip}}^2 \|x - y\|_2^2. \quad \Box$$

Definition 4.2. Let I be a bounded closed interval in \mathbb{R} , $f \in C^1(I)$. The function

$$\tilde{f}(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & (x \neq y) \\ f'(x) & (x = y) \end{cases}$$

is called the difference quotient of f.

Note that $\|\tilde{f}\|_{\infty} = \|f'\|_{\infty}$. When $a \in M_{sa}$ and $[-\|a\|, \|a\|] \subset I$, we have $\pi_a \colon C(I \times I) \to B(H)$ by $\pi_a(f \otimes g)\xi = f(a)\xi g(a)$.

Lemma 4.3. For any $a \in \mathscr{D}$ and $f \in C^1(I)$, the operator f(a) is in dom $\overline{\delta}$ and $\overline{\delta}(f(a)) = \pi_a(\tilde{f})\delta(a)$.

Proof. The assertion is obvious for polynomial functions. The equality for the general C^1 -functions follows from it because it is compatible with the C^1 -norm. \Box

Remark 4.4. When T is a closed operator on H, $x_n \to x$ $(n \to \infty)$ in H and $\sup_n ||Tx_n|| < \infty$ imply that $x \in \text{dom } T$ and that $Tx \in \bigcap_{m=0}^{\infty} \overline{\text{conv}} \{Tx_n : n \ge m\}$, where $\overline{\text{conv}}$ denotes the closed convex span. This is because, taking a suitable subsequence if necessary, we may assume that the bounded sequence Tx_n is weakly convergent to some y. Taking the convex closure, we can find a sequence $(z_n)_{n\in\mathbb{N}}$ such that $Tz_n \to y$ in norm and that z_n is in the algebraic convex closure of $\{x_k : k \ge n\}$. By construction, $(z_n)_{n\in\mathbb{N}}$ converges to x.

Lemma 4.5. Let x be an unbounded self adjoint operator on L^2M which is in dom $\overline{\delta}$, $f \in \text{Lip}_0$. Then $f(x) \in \text{dom } \overline{\delta}$ and $\|\overline{\delta}(f(x))\| \leq \|f\|_{\text{Lip}} \|\overline{\delta}(x)\|$.

Proof. Choose a mollifier $(\phi_n)_n$ and set $f_n = f * \phi_n$. Thus f_n is of C^1 class and $f_n \to f$ uniformly on I. By

$$|f_n(y) - f_n(z)| = \int |f(y - r) - f(z - r)|\phi_n(r)dr \le ||f||_{\text{Lip}} |y - z|,$$

we have $||f_n||_{\text{Lip}} \leq ||f||_{\text{Lip}}$. Now take a sequence $(a_n)_{n \in \mathbb{N}}$ in \mathscr{D}_{sa} which is convergent to x in $||-||_2$ -norm. Then

$$\left\|\bar{\delta}(f_n(a))\right\| = \left\|\pi_a(\tilde{f}_n)\delta(a)\right\| \le \|f_n\|_{\operatorname{Lip}} \|\delta a\|.$$

This shows $f(x) \in \operatorname{dom} \overline{\delta}$.

Definition 4.6. A derivation $\delta: M \to H$ is said to be real when we have

$$\langle \delta(x), \delta(y)z \rangle = \langle z^* \delta(y^*, x^*) \rangle$$

for any $x, y, z \in M$.

Remark 4.7. We summarize a few properties of real derivations.

- When M is the group von Neumann algebra $L\Gamma$ of a group Γ , the above condition is equivalent to $\langle \delta(s), \delta(t) \rangle \in \mathbb{R}$.
- In general, when we have a *J*-operator, δ is real if and only if $Jx\delta(y)z = z^*\delta(y^*)x^*$, since, by definition, $\langle \delta(x), \delta(y)z \rangle$ is equal to $\langle z^*J\delta(y), J\delta(x) \rangle$.
- When δ is real, dom δ is self adjoint.

Let $\overline{\mathscr{D}}$ denote dom $\overline{\delta}$.

Lemma 4.8. Let δ be a real derivation. When $x \in \overline{\mathcal{D}}$, |x| is also in $\overline{\mathcal{D}}$ and $M \cap \overline{\mathcal{D}}$ is a *-subalgebra of M.

Proof. Consider the linear map $\delta^{(2)}: M_2 \mathscr{D} \to M_2 H \simeq H^{\oplus 4}$. Then $\overline{\delta^{(2)}} = \overline{\delta}^{(2)}$ and for any $z \in \overline{\mathscr{D}}$,

$$w = \begin{bmatrix} 0 & z^* \\ z & 0 \end{bmatrix} \in \operatorname{dom} \delta^{\overline{(2)}} \Rightarrow w^2 = \begin{bmatrix} |z|^2 & 0 \\ 0 & |z^*|^2 \end{bmatrix} \in \operatorname{dom} \delta^{\overline{(2)}}.$$

Thus $|z|^2$ is in \mathscr{D} .

Let $x, y \in \overline{\mathscr{D}}$. The polarization

$$x^*y = \frac{1}{4}\sum i^k |x + i^k y|$$

shows $x^*y \in \overline{\mathscr{D}}$, and in particular $x^* \in \overline{\mathscr{D}}$ follows from $1 \in \mathscr{D}$.

Lemma 4.9. For any $x \in \overline{\mathscr{D}} \cap M_{sa}$, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ in \mathscr{D}_{sa} such that

$$\|x_n - x\|_2 \to 0, \|\delta(x_n) - \bar{\delta}(x)\| \to 0 \text{ and } \|x\|_{\infty} \le \|x\|_{\infty}$$

In particular, $x_n \to x$ in the ultrastrong topology.

Proof. The only nontrivial part is the last inequality. This is achieved by the functional calculus with respect to the function

$$f(t) = \begin{cases} \|x\|_{\infty} & (\|x\|_{\infty} < t) \\ t & (|t| \le \|x\|_{\infty}) \\ -\|x\|_{\infty} & (t < -\|x\|_{\infty}). \quad \Box \end{cases}$$

Theorem 4.10. The restriction of $\overline{\delta}$ to $\overline{\mathscr{D}} \cap M$ is a derivation.

Proof. Let $x \in \overline{\mathscr{D}} \cap M$. Choose a sequence $(x_n)_{n \in \mathbb{N}}$ in \mathscr{D} weakly convergent to x and $\delta(x_n) \to \overline{\delta}(x)$. For each $y \in \mathscr{D} \cap M$, we have $x_n y \to xy$ in the $\|-\|_2$ -norm. Since y is bounded, we have $\delta(x_n)y \to \overline{\delta}y$. On the other hand, the representation of M on H is normal, which implies $x_n \delta(y) \to x\delta(y)$. Thus we have $\overline{\delta}(xy) = x\delta(y) + \overline{\delta}(x)y$. Similar approximation in y shows that $\overline{\delta}(xy) = x\overline{\delta}(y) + \overline{\delta}(x)y$. for any $y \in \overline{\mathscr{D}} \cap M$. \Box

4.2. Semigroup associated to a derivation. In the following we assume $M \cap \overline{\mathscr{D}} = \mathscr{D}$. Put $\Delta = \delta^* \overline{\delta}$. This is a positive self adjoint operator on $L^2 M$ satisfying $\Delta \hat{1} = \hat{1}$ and commutes with the J operator so that we have " $\Delta(x^*) = (\Delta x)^*$." Put $\phi_t = e^{-t\Delta}$. This is a semigroup of positive contractions satisfying $\phi_t \hat{1} = \hat{1}$ and $\phi_t \nearrow Id$ as $t \searrow 0$. The normalized resolvents

$$\eta_{\alpha} = \frac{\alpha}{\alpha + \Delta}$$

for $\alpha > 0$ are again positive contractions on L^2M satisfying $\eta_{\alpha} \nearrow \text{Id}$ as $\alpha \nearrow \infty$. These operators are related to each other as follows:

$$\Delta \underbrace{\underset{\text{derivation}}{\overset{\text{exponential}}{\longleftarrow}} \phi_t \xrightarrow[\text{Laplace trans.}]{} \eta_{\alpha}}_{\text{inverse}}$$

where the Laplace transform is given by

$$\eta_{\alpha} = \alpha \int_{0}^{\infty} e^{-\alpha t} \phi_{t} dt = \int_{0}^{\infty} e^{-t} \phi_{\frac{t}{\alpha}} dt.$$

Recall that any unital completely positive map $\phi: M \to M$ is expressed as $V^*\pi(x)V$ for some representation $\pi: M \to B(K)$ and an isometry $V: L^2M \to K$ (Steinespring's theorem). When ϕ is normal, π can be taken as a normal representation (we may take the normal part of a possibly non-normal π given by Steinespring's theorem). Thus,

- (1) For any $x \in M$, $\phi(x^*x) \phi(x^*)\phi(x) = V^*\pi x^*(1 VV^*)\pi xV \ge 0$. When ϕ preserves τ , $\|\phi(x)\|_2 \le \|x\|$.
- (2) When ϕ preserves τ , $\|\phi(x^*y) \phi(x^*)\phi(y)\|_2 = \|V^*\pi x(1 VV^*)\pi yV\hat{1}\|$ is bounded from above by

$$\|\phi(x^*x) - \phi x^* \phi x\|_{\infty}^{\frac{1}{2}} \left(\tau(\phi(y^*y) - \phi y^* \phi y)\right)^{\frac{1}{2}} \le 2 \|x\|_{\infty} \|y - \phi(y)\|_2$$

by $\tau(\phi(y^*y) - \phi y^*\phi y) = \|y\|_2^2 - \|\phi y\|_2^2$, etc.

Fact. Consider the 1-norm $||x||_1 = \sup \{|\tau(xy)| : ||y||_{\infty} \le 1\}$ for $x \in M$. $x \in L^2M$ is in M if and only if $\sup \{|\tau(xy)| : ||y||_1 \le 1, xy \in M\}$ is finite.

Theorem 4.11. (Sauvageot, [1]?) The contractions ϕ_t and η_{α} map M into M, are unital completely positive and τ -symmetric, i. e. $\tau(\phi_t(x)y) = \tau(x\phi_t(y))$ etc.

Proof. Observe that $\phi_t^{(n)} = e^{-t\Delta^{(n)}}$ where $\Delta^{(n)} = \delta^{(n)*}\delta^{(n)}$ for $\delta^{(n)}: M_n \mathscr{D} \to M_n H$. Thus, it is enough to show that the maps are positive to conclude that they are actually completely positive. Put

$$\Delta_{\alpha} = \frac{\alpha \Delta}{\alpha + \Delta} = \alpha (1 - \eta_{\alpha}).$$

Then

$$\phi_t = e^{-t\Delta}e = \lim_{\alpha \nearrow \infty} e^{-t\Delta_\alpha} = \lim_{\alpha \nearrow \infty} e^{-t\alpha} \sum_{n=0}^{\infty} \frac{t\alpha\eta_\alpha}{n!}$$

where the limit is taken in the strong operator topology (note: this might be the norm topology, as we are using c_0 functions converging from below). The last expression is compatible with the $x \mapsto \tau(xy)$ ($||y||_1 \leq 1$) functionals. Thus it reduces to show that η_{α} restricts to a positive map on M.

By scaling δ , we may assume that $\alpha = 1$. Let $x \in M_+$ and put $y = (1 + \Delta)^{-1} x \in dom \Delta$. We have

$$\|\delta y\|^2 + \|y\|_2^2 = \langle y, \Delta y \rangle + \langle y, y \rangle = \langle y, x \rangle$$

Then the function $\Phi(z) = \|\bar{\delta}(z)\|^2 + \|z - x\|_2^2$ for $z \in \overline{\mathscr{D}}_{sa}$ satisfies

$$\begin{split} \|\bar{\delta}(z-y)\|^2 + \|z-y\|_2^2 &= \|\bar{\delta}(z)\|^2 - 2\langle z, \Delta y \rangle + \|\bar{\delta}(y)\|^2 + \|z\|^2 - 2\langle z, y \rangle + \|y\|^2 \\ &= \|\bar{\delta}(z)\|^2 + \|z\|^2 - 2\langle z, x \rangle + \|x\|^2 \\ &- (\|\bar{\delta}(y)\|^2 + \|y\|^2 - 2\langle y, x \rangle + \|x\|^2) \\ &= \Psi(z) - \Psi(y). \end{split}$$

Consider a function

$$f(t) = \begin{cases} \|x\|_{\infty} & (\|x\|_{\infty} < t) \\ t & (0 \le t \le \|x\|_{\infty}) \\ 0 & (t < 0). \end{cases}$$

of Lip_0 class with $\|f\|_{\operatorname{Lip}} = 1$. Then

$$\Psi(f(z)) = \left\| \bar{\delta}(f(z)) \right\|^2 + \|f(z) - f(x)\| \le \Psi(z).$$

Take a sequence $(z_n)_{n\in\mathbb{N}}$ in \mathscr{D}_{sa} with $||z_n - y||_2 \to 0$ and $||\delta z_n - \overline{\delta}y|| \to 0$. Then we have

$$||fz_n - y||_2^2 \le \Psi(fz_n) - \Psi(y) \le \Psi(z_n) - \Psi(y) \to 0.$$

Thus $y = \lim f z_n$ and $0 \le y \le ||x||$ and η_1 is shown to be unital positive.

Let B be a von Neumann subalgebra of M. Then we are interested in "when ϕ_t converges uniformly on B_1 ?" Roughly, this means " δ is inner on B."

Lemma 4.12. Let $\Omega \subset M_1$. Then $\phi_t \to id$ uniformly on Ω as $t \to 0$ if and only if $\eta_{\alpha} \to id$ uniformly on Ω as $\alpha \to \infty$.

Proof. \Rightarrow : We have

$$\|x - \eta_{\alpha} x\|_{2} \leq \int_{0}^{\infty} e^{-s} \|x - \phi_{\frac{s}{a}}(x)\|_{2} ds,$$

but $\|x - \phi_{\frac{s}{a}}(x)\|_2$ does not exceed 2.

 \Leftarrow : Suppose ϕ_s did not converge uniformly on Ω. Then there is a constant c such that for any t there exists an element x_t of Ω satisfying $\langle x_t - \phi_t x_t, x_t \rangle \geq c$.

Then

26

$$\begin{aligned} \langle x_t - \eta_{\frac{1}{t}} x_t, x_t \rangle &= \int_0^\infty e^{-s} \langle x_t - \phi_{st} x_t, x_t \rangle ds \\ &\geq \int_0^1 e^{-s} \langle x_t - \phi_t(x_t), x_t \rangle ds \\ &\geq c(1 - e^{-1}) \end{aligned}$$

and η_{α} is not uniformly convergent on Ω .

Lemma 4.13. For the latter convenience we record the following equalities: (1) In $B(L^2M)$,

$$\eta_{\alpha}^{\frac{1}{2}} = \frac{1}{\pi} \int_{0}^{\infty} \frac{t^{-\frac{1}{2}}}{1+t} \eta_{\frac{\alpha(1+t)}{t}} dt.$$

(2) In $B(L^2M)$,

$$(\mathrm{Id} - \eta_{\alpha})^{\frac{1}{2}} = \frac{1}{\pi} \int_{0}^{\infty} \frac{t^{-\frac{1}{2}}}{1+t} (1 - \eta_{\frac{\alpha(1+t)}{t}}) dt = \mathrm{Id} - \theta_{\alpha}$$

where θ_{α} restricts to a unital completely positive map on M. (3) $\psi_t = e^{-t\Delta^{\frac{1}{2}}}$ is τ -symmetric and unital completely positive on M.

Proof. (1): we have

$$s^{\frac{1}{2}} = \frac{1}{\pi} \int_0^\infty \frac{s}{s+t} t^{-\frac{1}{2}} dt \Rightarrow \eta_{\alpha}^{\frac{1}{2}} = \frac{1}{\pi} \int_0^\infty \frac{\eta_{\alpha}}{t+\eta_{\alpha}} t^{-\frac{1}{2}} dt.$$

On the other hand,

$$\frac{\eta_{\alpha}}{t+\eta_{\alpha}} = \frac{\alpha}{\alpha(1+t)+t\Delta} = \frac{1}{1+t}\eta_{\frac{\alpha(1+t)}{t}}.$$

(3): We have
$$\Delta_{\alpha}^{\frac{1}{2}} = \alpha^{\frac{1}{2}} (\operatorname{Id} - \eta_{\alpha})^{\frac{1}{2}} = \alpha^{\frac{1}{2}} (\operatorname{Id} - \theta_{\alpha})$$
. Thus ψ_t can be written as

$$\lim_{\alpha \to \infty} e^{-t\Delta_{\alpha}^{\frac{1}{2}}} = \lim_{\alpha \to \infty} e^{-\alpha^{\frac{1}{2}t}} e^{t\alpha^{\frac{1}{2}}\theta_{\alpha}}.$$

Lemma 4.14. For $x, y \in \mathcal{D}$, put $\Gamma(x^*, y) = \Delta^{\frac{1}{2}}(x^*)y + x^*\Delta^{\frac{1}{2}}(y) - \delta^{\frac{1}{2}}(x^*y)$. Then we have

$$\|\Gamma(x^*, y)\|_2 \le 4 \|\delta(x)\| \|x\|_{\infty} \|\delta(y)\| \|y\|_{\infty}.$$

Proof. First we have

$$\Gamma(x^*, y) = \left. \frac{d}{dt} (\psi_t(x^*y) - \psi_t(x^*)\psi_t(y)) \right|_{t=0}.$$

Note that $\|\psi_t x\| \leq \|x\|$. Define a sesquilinear form on $\mathscr{D} \otimes M$ by $\langle y \otimes b, x \otimes a \rangle = \tau(a^*\Gamma(x^*, y)b)$. This is positive semidefinite by

$$\langle \sum x_i \otimes a_i, \sum x_i \otimes a_i \rangle = \lim_{t \to 0} \tau \left(\sum a_i \frac{\psi_t(x_i^* x_j) - \psi_t x_i^* \psi_t(x_j)}{t} a_j \right) \le 0.$$

For $z = v|z| \in M$, we have

$$|\tau(\Gamma(x^*,y)z)| = |\langle y \otimes v|z|^{\frac{1}{2}}, x \otimes |z|^{\frac{1}{2}}\rangle| \leq \langle y \otimes v|z|^{\frac{1}{2}}, y \otimes v|z|^{\frac{1}{2}}\rangle^{\frac{1}{2}} \langle x \otimes |z|^{\frac{1}{2}}, x \otimes |z|^{\frac{1}{2}}\rangle^{\frac{1}{2}}.$$

Here, $\langle x \otimes a, x \otimes a \rangle \leq ||aa^*||_2 ||\Gamma(x^*, x)||_2$ and

$$\begin{aligned} \|\Gamma(x^*, x)\| &\leq \left\|\Delta^{\frac{1}{2}} x^*\right\|_2 \|x\|_{\infty} + \|x^*\|_{\infty} \left\|\Delta^{\frac{1}{2}} x\right\|_2 + \left\|\Delta^{\frac{1}{2}} (x^* x)\right\|_2 \\ &\leq 4 \left\|\delta(x)\right\| \|x\|_{\infty} \,. \end{aligned}$$

(Here we used the fact that $\left\|\Delta^{\frac{1}{2}}(x^*x)\right\|_2 = \|\delta(x^*)x + x^*\delta(x)\|$.) Hence we arrive at $|\tau(\Gamma(x^*, y)z)|^2 \le \|\Gamma(x^*, x)\|_1 \|z\|_1 \|\|y\|_1 \|z\|_1$.

$$\| r(\mathbf{r}(x,y)z) \| \leq \| \mathbf{r}(x,x) \|_{2} \| z \|_{2} \| (y,y) \| \| z \|_{2},$$

$$\| ^{2} < \| \Gamma(x,x) \|_{2} \| (y,y) \| \| z \|_{2},$$

thus $\|\Gamma(x^*, y)\|^2 \le \|\Gamma(x^*, x)\|_2 2 \|(y^*, y)\|.$

Put $\zeta_{\alpha} = \eta_{\alpha}^{\frac{1}{2}}$. $\Delta^{\frac{1}{2}}\zeta_{\alpha} = \Delta_{\alpha}^{\frac{1}{2}} = (\mathrm{Id} - \eta_{\alpha})^{\frac{1}{2}}$ (hence bounded) and $\left\|\Delta_{\alpha}^{\frac{1}{2}}x\right\|_{2}^{2} = \alpha \langle (\mathrm{Id} - \eta_{\alpha})x, x \rangle$. Put $\tilde{\delta}_{\alpha} = \alpha^{\frac{1}{2}}\delta\zeta_{\alpha}$. Thus $\left\|\tilde{\delta}_{\alpha}(x)\right\| = \langle (\mathrm{Id} - \eta_{\alpha})x, x \rangle$ and $\left\|\delta\right\|_{\alpha}(x) \to 0$ if and only if $\|x - \eta_{\alpha}x\|_{2} \to 0$.

Theorem 4.15. (Peterson?) Let $\Omega \subset M_1$ and suppose $\eta_{\alpha} \to \text{Id uniformly on}$ Ω . Then we have $\|\tilde{\delta}_{\alpha}(ax) - \zeta_{\alpha}(a)\tilde{\delta}_{\alpha}(x)\| \to 0 \ (\alpha \to \infty)$ uniformly for $a \in \Omega$ and $x \in M_1$.

Proof. By assumption ζ_{α} and θ_{α} converge uniformly to Id on Ω , by e.g. .

$$\theta_{\alpha} = \frac{1}{\pi} \int_0^\infty \frac{t^{\frac{1}{2}}}{1+t} \eta_{\frac{\alpha t}{1+t}} dt.$$

In particular, $\theta_{\alpha}(ax) \approx \theta_{\alpha}(a)\theta_{\alpha}(x) \approx a\theta_{\alpha}(x)$ whre \approx means the 2-norm convergence under $\alpha \to \infty$. Now,

$$\alpha^{-\frac{1}{2}}\Delta^{\frac{1}{2}}\zeta_{\alpha}(ax) = \alpha^{-\frac{1}{2}}(\mathrm{Id}-\theta_{\alpha})(ax) \approx \alpha^{-\frac{1}{2}}a(\mathrm{Id}-\theta_{\alpha})(x) \approx \alpha^{-\frac{1}{2}}\zeta_{\alpha}(a)(\mathrm{Id}-\theta_{\alpha})(x)$$
$$= \alpha^{-\frac{1}{2}}\zeta_{\alpha}(a)\Delta^{\frac{1}{2}}\zeta_{\alpha}(x) \approx \alpha^{-\frac{1}{2}}\Delta^{\frac{1}{2}}(\zeta_{\alpha}(a)\zeta_{\alpha}(x)) - \tilde{\delta}_{\alpha}(a)\zeta_{\alpha}(x)$$

where the last approximation is given by applying Lemma 4.14 to get the error estimate

$$4\sqrt{\alpha^{-\frac{1}{2}}} \left\| \delta^{\frac{1}{2}}(\zeta_{\alpha}(a) \right\| \left\| \alpha^{\frac{1}{2}} \delta \zeta_{\alpha} x \right\|.$$

Here, $\alpha^{-\frac{1}{2}} \left\| \delta^{\frac{1}{2}}(\zeta_{\alpha}(a) \right\| \sim 0$ and $\left\| \alpha^{\frac{1}{2}} \delta \zeta_{\alpha} x \right\|$ is bounded by 1. Finally we arrive at

$$\tilde{\delta}_{\alpha}(ax) \approx \alpha^{-\frac{1}{2}} \delta(\zeta_{\alpha}(a)\zeta_{\alpha}(x)) - \tilde{\delta}_{\alpha}(a)\zeta_{\alpha}(x) = \zeta_{\alpha}(a)\tilde{\delta}_{\alpha}(x). \qquad \Box$$

Theorem 4.16. (Haagerup) Let M be a von Neumann algebra. M is finite injective if and only if for any nonzero central projection p of M, there exist $n \in \mathbb{N}$ and $u_1, \ldots, u_n \in \mathcal{U}(pM)$ such that $\|\sum_{i=1}^n u_i \otimes u_i\|_{\infty} = n$.

Proof. (Outline) \Rightarrow : By Connes' theorem, $M \otimes_{\min} \overline{M} \to B(L^2M)$ can be defined by $(a \otimes b).\hat{x} = \widehat{axb^*}$. Now, $(\sum_{i=1}^n u_i \otimes \overline{u_i}).\hat{1} = n\hat{1}$ when $u_i \in \mathcal{U}M$.

 $\begin{array}{l} \Leftarrow: \text{ The minimal tensor product } M \otimes_{\min} \bar{M} \text{ acts on } H \hat{\otimes} \bar{H} \text{ i.e. the Hilbert-}\\ \text{Schmidt space of } H. \text{ For any finite set } F \subset \mathcal{U}M \text{ containing 1 and } \left\| \sum_{u \in F} u \otimes \bar{u} \right\| = |F|, \text{ there exists } T \in HS(H) \text{ of 2-norm 1}, \left\| \sum_{u \in F} uTu^* \right\| \approx |F|. \text{ Then } uTu^* \approx T.\\ \text{Now, define } \phi_F(x) = \text{Tr}(T^*xT). \text{ Then } \phi_F(uxu^*) \approx \phi_\alpha(x) \text{ for } u \in F. \text{ We obtain} \end{array}$

an ultrafilter convergence $\phi_F \to \phi \in S(B(H))$ such that $\phi(uxu^*) = \phi(x)$ for any $u \in \mathcal{U}M$. This holds under any central projection, which means M is injective. \Box

Recall that we are investigating closable real derivations on M. Thus, H is an M-bimodule with a J-operator: $J(a\delta(x)b) = b^*\delta(x^*)a^*$. We have the operators

$$\eta_{\alpha} = \frac{\alpha}{\alpha + \delta^* \overline{\delta}}, \zeta_{\alpha} = \eta_{\alpha}^{\frac{1}{2}}, \tilde{\delta}_{\alpha} = \alpha^{-\frac{1}{2}} \delta \zeta_{\alpha} \colon M \to H.$$

As $\alpha \to \infty$, we have $\left\| \tilde{\delta}_{\alpha}(a) \right\|^2 = \left\| (\mathrm{Id} - \eta_{\alpha})^{\frac{1}{2}} a \right\|_2^2 = \tau((a - \eta_{\alpha} a)a^*) \searrow 0.$

Theorem 4.17. Let $(M;\tau)$ be a finite von Neumann algebra, $H = (L^2 M \otimes L^2 M)^{\oplus \mathbb{N}}$. Suppose $Q \subset M$ is a von Neumann subalgebra without injective summand. Then $\phi_t \to \text{Id}$ uniformly on $(Q' \cap M)_1$.

Proof. It is enough to show that for any nonzero central projection $p \in Q$, there exists a central projection $q \leq p$ in Q such that $\phi_t \to \operatorname{Id}$ on $q(Q' \cap M)_1$. In fact, then by the maximal argument we would get a family $(p_i)_{i \in I}$ of nonzero central projections such that $\sum_{i \in I} p_i = 1$ and $\phi_t \to \operatorname{Id}$ on $p_i(Q' \cap M)_1$ for each i. Taking a finite subset $I_0 \subset I$ such that $\tau(\sum_{{\mathbb{C}} I_0} p_i) < \frac{\epsilon}{3}$, we find t_0 such that $t > t_0$ implies $\|\phi_t(a) - a\|_2 < \frac{\epsilon}{3}$ for $a \in p_{I_0}(Q' \cap M)_1$. On the other hand, for any $a \in p_{I_0}(Q' \cap M)_1$ $\tau(a - p_{I_0}a) < \frac{\epsilon}{3}$.

Thus we are going to prove the negation of the above claim leads to that pQ is injective. Let $q \leq p$ be a nonzero central projection in $Q, u_1, \ldots, u_n \in \mathcal{U}(qQ)$. As ϕ_t does not converge uniformly on $q(Q' \cap M)_1$, there exists $x_\alpha \in q(Q' \cap M)_1$ for any α such that $\liminf \|\tilde{\delta}_\alpha(x_\alpha)\| > 0$.

Applying Theorem 4.15 to the finite subset $\Omega = \{u_1, \ldots, u_n\}$ on which ϕ_t is uniformly convergent, for any $x \in q(Q' \cap M)$, as $\alpha \to \infty$,

$$\sum_{i} \zeta_{\alpha}(u_{i})\tilde{\delta}_{\alpha}(x)\zeta_{\alpha}(u_{i}^{*}) \approx \sum_{i} \tilde{\delta}_{\alpha}(u_{i}xu_{i}^{*}) = n\tilde{\delta}_{\alpha}(x).$$

Thus, $\left\|\sum_{i} \zeta_{\alpha}(u_{i}) \otimes \overline{\zeta_{\alpha}(u_{i})}\right\|_{\min} \to n \text{ as } \alpha \to \infty$. On the other hand, since ζ_{α} is a normal unital completely positive map, $\left\|\sum_{i} \zeta_{\alpha}(u_{i}) \otimes \overline{\zeta_{\alpha}(u_{i})}\right\|_{\min}$ is always bounded by $\left\|\sum u_{i} \otimes \bar{u}_{i}\right\|$, which shows that $\left\|\sum u_{i} \otimes \bar{u}_{i}\right\| = n$. Thus we have the injectivity of pQ by Theorem 4.16.

Remark 4.18. If a 1-cocycle $b: \mathbb{F}_r \to \ell_2 \mathbb{F}_r^{\oplus n}$ satisfies $||b(s)||_2^2 = |s|$, we obtain a derivation δ on $\ell_2 \mathbb{F}_r \otimes \ell_2 \mathbb{F}_r^{\oplus n}$ given by $\delta(s) = \delta_\Delta \otimes b$ where δ_Δ is the "diagonal" operator on $\ell_2 \mathbb{F}_r$ which multiplies the standard base δ_s by |s|. The semigroup ϕ_t associated to this derivation is written as $\phi_t(\lambda(s)) = e^{-t|s|}\lambda(s)$, thus it is in $\mathbb{K}(L^2M)$.

When B is a von Neumann subalgebra of $L\mathbb{F}_r$, $\phi_t \to \mathrm{Id}$ uniformly on B_1 if and only if B is a direct sum $\oplus M_{n_i}$ of finite dimensional algebras.

Corollary 4.19. Let Q be a von Neumann subalgebra of $L\mathbb{F}_r$ without injective summand. Then the relative commutant $Q' \cap L\mathbb{F}_r$ is completely atomic. In particular, $Q \otimes L^{\infty}[0,1] \not\subset L\mathbb{F}_r$.

Theorem 4.20. Let $(M; \tau)$ be a finite von Neumann algebra, $H = (L^2 M \otimes L^2 M)^{\mathbb{N}}$, δ a closable real derivation. If $B \subset M$ is diffuse (i.e. without minimal projection) von Neumann subalgebra such that ϕ_t converges to Id uniformly on B_1 , one has $\phi_t \to \text{Id uniformly on } N(B)_1''$.

Proof. Since B is diffuse, there exists a sequence $(v_n)_{n\in\mathbb{N}}$ in $\mathcal{U}B$ ultraweakly convergent to 0 (e.g. $e^{2\pi i n t} \in L^{\infty}[0,1]$ for $n \in \mathbb{N}$). For any $u \in \mathcal{N}(B)$,

$$\begin{split} \left\| \tilde{\delta}_{\alpha}(u) \right\| &\leq \liminf \left\| \tilde{\delta}_{\alpha}(u) - \zeta_{\alpha}(v_n) \tilde{\delta}_{\alpha}(u) \zeta_{\alpha}(u^* v_n^* u) \right\| \\ & \to \left\| \tilde{\delta}_{\alpha}(u) - \tilde{\delta}_{\alpha}(v_n u u^* v_n^* u) \right\| = 0 \quad (n \to \infty) \end{split}$$

The convergence holds uniformly for u. It remains to apply the following lemma to N(B) = G.

Lemma 4.21. When $\phi_t \to \text{Id}$ uniformly on $G \subset \mathcal{U}M$, we have the uniform convergence $\phi_t \to \text{Id}$ on G_1'' .

Proof of the lemma. Let $\phi: M \to M$ be a τ -symmetric unital completely positive map (hence a contraction). Consider the Stinespring construction on $M \otimes_{\text{alg}} L^2 M$ by $\langle a \otimes x, b \otimes y \rangle = \langle \phi(b^*a)x, y \rangle$. This is positive semi definite by the unital completely positivity. The *M*-*M*-action $a.(c \otimes x).b = ac \otimes xb$ is bounded and induces an *M*bimodule structure on the completion.

Now, for $\xi_0 = 1 \otimes \hat{1} \in M \otimes L^2 M$,

$$||a\xi_0 - \xi_0 a||^2 = \tau(\phi(aa^*)) + \tau(aa^*) - 2\Re\tau(\phi(aa^*)) = 2\tau((a - \phi(a))a^*).$$

On the other hand,

$$\frac{1}{2} \|a - \phi(a)\|_2^2 \le \|a\xi_0 - \xi_0 a\| \le 2 \|a - \phi(a)\|_2 \cdot \|a\|_2.$$

Thus, if $||u - \phi(u)|| \le \epsilon$, we have $||\xi_0 - u\xi_0 u^*|| \le \sqrt{2\epsilon}$. By taking the circumcenter of $\{u\xi_0 u^* : u \in G\}$, we get a *G*-invariant vector η_0 satisfying $||\xi_0 - \eta_0|| \le \sqrt{2\epsilon}$ (this is possible by the Ryll-Nardzewski's fixed point theorem). Thus we obtain $||a\xi_0 - \xi_0 a|| \le 2\sqrt{2\epsilon}$ for $a \in (G'')_1$.

APPENDIX A. EMBEDDABILITY OF SUBALGEBRAS

Let $A \subset M$ be an inclusion of finite von Neumann algebras with a trace τ on M. Recall that we have the associated Jones projection $e_A \in B(L^2M)$, the orthogonal projection onto $L^2A = \overline{A1}$ and the basic extension $\langle M, A \rangle$ of M:

$$\langle M, A \rangle = \mathsf{vN} \{ M, e_A \} = \left\{ \sum_{\text{finite}} x_i e_A y_i : x_i, y_i \in M \right\}''$$

and the semifinite trace $\operatorname{Tr}(\sum x_i e_A y_i) = \sum \tau(x_i y_i)$ on $\langle M, A \rangle$.

Theorem A.1. (Popa) Let $A \subset M$ be an inclusion of separable finite von Neumann algebras, p a nonzero projection in M, $B \subset pMp$ a von Neumann subalgebra. The the followings are equivalent:

(1) There are no sequence $(w_n)_n$ in $\mathcal{U}B$ such that $||E_A(y^*w_nx)||_2 \to 0$ for any $x, y \in M$.

NARUTAKA OZAWA

- (2) There exists a nonzero positive element $d \in \langle M, A \rangle$ of finite trace such that $0 \notin \overline{\operatorname{conv}}^w \{wdw^* : w \in \mathcal{U}B\}$
- (3) There exists a closed nonzero B-A submodule H of pL^2M such that $\dim_A H_A$ is finite.
- (4) There exists a projection e in A, another 0 ≠ f in B and a normal *homomorphism θ: fBf → eAe such that there exists a nonzero partial isometry v ∈ M satisfying xv = vθ(x) for any x ∈ fBf, and vv* ∈ (fBf)'∩ fMf, v*v ∈ θ(fBf)' ∩ eMe.

Proof. (1) \Rightarrow (2): By assumption there exits a finite set $\mathscr{F} \subset M$ and $\epsilon > 0$ such that

$$\inf_{w \in \mathcal{U}B} \sum_{x, y \in \mathscr{F}} \|E_A(y^* w x)\|_2^2 \ge \epsilon$$

Now, put $d = \sum_{y \in \mathscr{F}} y e_A y^* \in \langle M, A \rangle_+$. By definition $\operatorname{Tr}(d) < \infty$ and we have

$$\sum_{x \in \mathscr{F}} \langle w^* dw \hat{x}, \hat{x} \rangle = \sum_{x, y \in \mathscr{F}} \langle e_A \widehat{y^* w x}, \widehat{y^* w x} \rangle = \sum_{x, y \in \mathscr{F}} \| E_A (y^* w x) \|_2^2 \ge \epsilon$$

for any $w \in \mathcal{U}B$.

 $(2) \Rightarrow (3)$: Let \mathcal{C} denote the closed convex hull of $\{wdw^* : w \in \mathcal{U}B\}$ in $L^2\langle M, A \rangle$. We can take the circumcenter d_0 of \mathcal{C} which is not equal to zero by (2). Then d_0 is in $B' \cap p\langle M, A \rangle p$ and $\operatorname{Tr}(d_0) \leq \operatorname{Tr}(d) < \infty$. Thus we can take a nonzero spectral projection q of d_0 such that $\operatorname{Tr}(q) < \infty$. Now, $H = qL^2M$ is a B-A submodule with $\dim_A H_A = \operatorname{Tr}(q)$.

(3) \Rightarrow (4): Fact. When H is a B-A module with $\dim_A H_A < \infty$, there exists a nonzero projection f of B, an fBf-A module $K \subset fH$ such that $K_A \hookrightarrow L^2 A_A$ as a right A-module.

Thus, let V denote such an injection $K_A \to L^2 A_A$. When $x \in fBf$, $VxV^* \in \text{End}_A(L^2A_A) = A$. Thus $\theta(x) = VxV^*$ defines a normal *-homomorphism (since V is injective) θ of fBf into eAe for $e = VV^*$. Put $\xi = V^*\hat{1} \in K$. Since $V\xi = VV^*\hat{1} = \hat{e}, \xi \neq 0$. On the other hand, for any $x \in fBf$,

$$\begin{aligned} x\xi &= V^*VxV^*\hat{1} = V^*\theta(x)\hat{1} \\ &= V^*\hat{1}\theta(x) \quad (\theta(x) \in eAe) \\ &= \xi\theta(x). \end{aligned}$$

Now we are going to investigate

$$\xi \in K \subset fH \subset pL^2M \subset L^2M$$

as a square integrable operator affiliated with M. By above we have $xL^{\xi} = L_{\xi}\theta(x)$ for any $x \in \mathcal{U}(fBf)$. Let $v|L_{\xi}|$ be the polar decomposition of L_{ξ} . Then

$$|L_{\xi}|^{2} = (xL_{\xi})^{*}(xL_{\xi}) = (L_{\xi}\theta(x))^{*}L_{\xi}\theta(x) = \theta(x)^{*}|L_{\xi}|^{2}\theta(x)$$

for $x \in \mathcal{U}(fBf)$. Thus $|L_{\xi}|$ commutes with $\theta(fBf)$. In particular $v^*v = s(|L_{\xi}|) \in \theta(fBf)' \cap eMe$. Finally,

$$xv|L_{\xi}| = xL_{\xi} = L_{\xi}\theta(x) = v|L_{\xi}|\theta(x) = v\theta(x)|L_{\xi}|,$$

which implies $xvv^*v = v\theta(x)v^*v$, i.e. $xv = v\theta(x)$ for any $x \in fBf$.

(4) \Rightarrow (1): Take e, f, v as in (4). Let E_{θ} denote the conditional expectation $eMe \rightarrow \theta(fBf)$. Then $0 \neq E_{\theta}(v^*v) \in Z(\theta(fBf)), vE_{\theta}(v^*v)^2v^* \in (fBf)' \cap fMf$.

Let $(f_i)_{i \in I}$ be a maximal family of mutually orthogonal nonzero projections satisfying $f_0 = f$ and $f_i \preceq f$ in B. Thus, $\sum f_i$ is equal to the central support $z_B(f)$ of f in B. Put $u_0 = f$. For each i, take a partial isometry u_i satisfyiking $u_i u_i^* = f_i$ and $u_i^* u_i \leq f$. Put $v_i = u_i v$. Now we have, for $w \in \mathcal{U}B$,

$$\sum_{i} \|E_A(v_i^* w v_0)\|_2^2 \ge \sum_{i} \|v v^* E_\theta(v_i^* w v_0)\|_2^2 = \dots = \tau(E_\theta(v^* v)^3) > 0.$$

Since $\sum \|v_i^*\|_2^2 \leq 1$ and $\|E_A(v_i^*wv_0)\|_2 \leq \|v_i^*\|_2$, there exists a finite subset \mathscr{F} of $\{v_i: i \in I\}$ containing v_0 and $\sum_{v_i \notin \mathscr{F}} \|v_i^*\|_2^2 < \tau(E_\theta(v^*v)^3)/2$.

Definition A.2. Let A and B be von Neumann subalgebras of M. B is said to embed into A inside M when the equivalent conditions of Theorem A.1 hold for B and A.

Corollary A.3. If B does not embed into A inside M, there exists a commutative von Neumann subalgebra B_0 of B which does not embed into A inside M. Equivalently, if any commutative subalgebra of B embeds into A, B also embeds into A.

Remark A.4. The above theorem is useful when we have τ -symmetric unital completely positive maps $\phi_i \colon M \to M$ which restrict to the identity map on A, giving $\hat{\phi}_i \in \langle M, A \rangle \cap A'$. Often one has $\hat{\phi}_i \in \mathbb{K} \langle M, A \rangle = C^*(xe_Ay : x, y \in M)$.

 $B\subset M$ is said to be rigid when $\phi_i\to {\rm Id}$ uniformly on the unit ball of $B_1.$ Then, taking $\phi=\phi_{i_0}$ that satisfies

$$\|\phi(b) - b\|_2 < \frac{1}{3} \quad (\forall b \in B_1),$$

 $d = \chi_{\left[\frac{1}{2},1\right]}(\hat{\phi})$ satisfies $\operatorname{Tr}(d) < \infty$ and

$$\left\|wdw^*\hat{1} - \hat{1}\right\| \le \frac{1}{2} + \left\|w\hat{\phi}w^*\hat{1} - \hat{1}\right\| = \frac{1}{2} + \|\phi(w^*) - w^*\|_2 \le \frac{5}{6}$$

Hence $\overline{\operatorname{conv}}^2 \{wdw^*\}$ does not contain 0 and B embeds into A inside M.

References

- F. Cipriani and J.-L. Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003) 78–120.
- [2] A. Connes, Classification of injective factors. Cases II_1 , II_{∞} , III_{λ} , $\lambda \neq 1$, Ann. of Math. (2) **104** (1976) 73–115.
- [3] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, *Ergodic Theory Dynamical Systems* 1 (1981) 431–450 (1982).
- [4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, Bull. Amer. Math. Soc. 81 (1975) 921–924.
- [5] D. Gaboriau, On orbit equivalence of measure preserving actions, in *Rigidity in dynamics and geometry (Cambridge, 2000)*, Springer, Berlin, 2002, 167–186.
- [6] W. Lück, Dimension theory of arbitrary modules over finite von Neumann algebras and L²-Betti numbers. II. Applications to Grothendieck groups, L²-Euler characteristics and Burnside groups, J. Reine Angew. Math. 496 (1998) 213–236.